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‘‘Plug and play’’ full-dimensional ab initio
potential energy and dipole moment surfaces
and anharmonic vibrational analysis for CH4–H2O

Chen Qu,a Riccardo Conte,a Paul L. Houstonbc and Joel M. Bowman*a

The potential energy surface of the methane–water dimer is represented as the sum of a new intrinsic

two-body potential energy surface and pre-existing intramolecular potentials for the monomers.

Different fits of the CH4–H2O intrinsic two-body energy are reported. All these fits are based on 30 467

ab initio interaction energies computed at CCSD(T)-F12b/haTZ (aug-cc-pVTZ for C and O, cc-pVTZ for H)

level of theory. The benchmark fit is a full-dimensional, permutationally-invariant analytical representation

with root-mean-square (rms) fitting error of 3.5 cm�1. Two other computationally more efficient two-

body potentials are also reported, albeit with larger rms fitting errors. Of these a compact permutationally

invariant fit is shown to be the best one in combining precision and speed of evaluation. An intrinsic two-

body dipole moment surface is also obtained, based on MP2/haTZ expectation values, with an rms fitting

error of 0.002 au. As with the potential, this dipole moment surface is combined with existing monomer

ones to obtain the full surface. The vibrational ground state of the dimer and dissociation energy, D0, are

determined by diffusion Monte Carlo calculations, and MULTIMODE calculations are performed for the IR

spectrum of the intramolecular modes. The relative accuracy of the different intrinsic two-body potentials

is analyzed by comparing the energetics and the harmonic frequencies of the global minimum well, and

the maximum impact parameter employed in a sample methane–water scattering calculation.

1 Introduction

The interaction between methane and water is essential for the
study of methane–water clathrates. It also plays an important
role in combustion chemistry and related gas-phase scattering
investigations. Methane clathrates have attracted extensive
interest because they are a potential source of energy,1 and
their formation in gas pipelines may be responsible for flow
reduction. The formation and dissociation of the clathrates
have been recently studied by means of molecular dynamics
(see, for instance, ref. 2–7). In combustion chemistry, energy
transfer and dissociation of methane CH4 (+M) ! CH3 + H
(+M) is of interest, with particular focus on the collisional
efficiency of M = H2O.8,9 The CH4–H2O collisional system has
been recently investigated by means of direct-dynamics9 to obtain
moments of the energy transfer, that can be well-converged by
means of only a few hundred trajectories. This has contributed to

validate some energy transfer models and to compare the
efficiencies of different collision partners with methane.10,11

However, finer collisional energy transfer details, such as rare,
but highly efficient energy-transfer events, detailed vibration–
vibration energy transfer, etc. need a much larger number of
trajectories, that are not feasible to do by means of direct
dynamics. These can be obtained with fitted potential energy
surfaces (PESs). Model analytical potentials have been used to
perform quasi-classical trajectory (QCT) simulations of the
collisional energy transfer for several systems (see, for instance,
ref. 12–14), but a realistic full-dimensional potential for CH4–
H2O is necessary to obtain high accuracy.

The methane–water interaction has been examined with
various ab initio methods, and several analytical forms of the
PES for rigid monomers have been presented. The earliest
studies (for example see ref. 15–18) either fail to correctly
identify the minimum structure or do not explore the full
configuration space, due to low-level ab initio methods.
Szczȩsńiak et al.19 and Rovira et al.20 successfully identified
two minima in the PES, but the electronic binding energy of the
global minimum was underestimated. The latter also reported the
harmonic vibrational frequencies of the dimer. Two six-dimensional
PESs for rigid monomers have been reported.21,22 In the more recent
work of Akin-Ojo and Szalewicz22 the electronic binding energy was
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given as 361 cm�1 by extrapolating CCSD(T)/aug-cc-pVQZ and
aug-cc-pV5Z results to the complete basis set (CBS) limit. More
recently, Copeland and Tschumper23 characterized the energetics of
the dimer PES with high-level CCSD(T)-F12b/VTZ-F12 calculations,
and reported the binding energy of 339 cm�1 with counterpoise (CP)
correction and 353 cm�1 without the correction for the global
minimum; these authors also reported the binding energy of 224
and 231 cm�1 with and without CP correction for the higher energy
minimum. However, none of the analytical PESs mentioned17–19,21,22

is full-dimensional and so cannot be used to investigate observables
that depend on the monomer vibrational motion. We report such
PESs here. In addition, we present a dipole moment surface; this has
not been reported previously.

Considering our future applications of this potential to
energy transfer studies and properties of CH4(H2O)n clusters,
for example methane clathrates, we employ the many-body
representation for the methane–water dimer, i.e., representing
the full PES as the sum of flexible monomer PESs plus an
intrinsic two-body interaction. The focus here is on the latter, in
full dimensionality. Specifically, we obtain a new PES for the
intrinsic two-body energy, which is defined as

V2b = Vdimer � VCH4
� VH2O, (1)

where the potentials for the isolated monomers are given using
obvious notation. In principle, the dimer and intrinsic two-body
potentials should be invariant with respect to all permutations of
like atoms. However, for the non-covalent interaction relevant
here, it is not necessary to consider the permutations of H atoms
of H2O with those of CH4.

A suitable approach to represent this symmetry in a fitting basis
comes from the theory of invariant polynomials. A computationally
efficient implementation of this approach consists in defining a set
of primary and secondary invariants,24 while a second implementa-
tion is based on monomial symmetrization.25 Both methods can
provide essentially equivalent, very precise fits to a data set of
electronic energies. However, while much faster to evaluate than
even low-level direct dynamics calculations, these representations
are generally significantly slower to evaluate than commonly used
model potentials. In applications involving methane clathrates,
we need to evaluate the intrinsic potential for each CH4–H2O
pair, so the computational cost can be high. Three of us have
recently introduced a compact fitting procedure26,27 that
removes polynomials depending on the intramolecular distances
in the monomial symmetrization approach, and guarantees
zero intrinsic two-body energy at the dissociation limit. This
procedure significantly speeds up the potential evaluation, but at
the cost of lower fitting precision. A different family of fitting
techniques is represented by sum-of-pairs methods, based on a
limited number of non-linear parameters.28 Sum-of-pairs methods
have the advantages that they require only a limited number of
ab initio energies for the fit and that qualitatively correct
physical behavior is ensured in all configurational regions,
even where ab initio energies have not been calculated. However,
pairwise fits may be not very accurate or appropriate to describe
systems (like methane–water) where orientation dependence is
expected to influence significantly the interaction. Furthermore,

they are based on two-body atomic interactions, thus missing
multi-atom contributions which are relevant at short distances, a
region of key importance for energy transfer.

In this article, we present a full-dimensional, permutationally
invariant fit to the methane–water intrinsic two-body potential,
based on the primary and secondary invariants approach. Other
compact and sum-of-pairs fits are also reported. By adding
existing monomer potentials of CH4 and H2O, a full PES of the
CH4–H2O dimer is obtained. There are numerous choices for
these monomer potentials and specific ones will be dictated by
the planned usage of the PES. We discuss this further in Section 2.
A dipole moment surface (DMS) is presented as well. The different
intrinsic two-body PESs are compared in terms of the root-mean-
square (rms) fitting error, the speed of potential evaluation, the
energetics, the harmonic frequencies as well as the maximum
impact parameter for bimolecular scattering simulations. Diffusion
Monte Carlo (DMC) and MULTIMODE calculations are performed
to characterize the zero-point properties and intramolecular vibra-
tional fundamentals and IR spectrum of the dimer.

The paper is organized as follows. In Section 2, we provide
the theoretical and computational details of the ab initio
calculation, the fitting methods, the DMC and MULTIMODE
calculations. In Section 3, we report the results of the comparisons
of the two-body PESs, the vibrational analysis, the IR spectra, and
preliminary collision dynamics. The conclusions and final remarks
are given in Section 4.

2 Theoretical and computational details
2.1 Ab initio calculations

The database of 30 467 configurations and energies was
obtained as follows. Seven C–O distances were picked in the
range from 3.0 to 10.0 Å, and, at each distance, 3200 monomer
geometries were chosen with different orientations. 4932 additional
configurations of the dimer were generated using ab initio mole-
cular dynamics at the DFT (B3LYP) level of theory. An initial fit then
was performed based on the 27 332 points described above. The
remaining 3135 points were calculated to provide better coverage of
the initial PES, based primarily on running DMC calculations of
the dimer zero-point energy and also to improve the harmonic
frequencies at the two minima.

The CCSD(T)-F12b method29,30 with haTZ (aug-cc-pVTZ for C
and O, and cc-pVTZ for H) basis set was employed to calculate
the energies, using MOLPRO 2010.31 For each dimer configu-
ration, the energies of the dimer and the isolated monomers at
that configuration were calculated, and the intrinsic two-body
energy was obtained according to eqn (1) without counter-poise
(CP) correction (see Section 3.1 for more discussion of the CP
correction). Overall, the computational cost of calculating
the 30 467 points in the database can be converted to roughly
13 days of CPU time on a 16-processor computer.

The expectation value of the three dipole moment compo-
nents of the dimer were calculated at MP2 level of theory with
haTZ basis set, also using MOLPRO 2010. The dipole moments
of the isolated monomers were also calculated at the same level
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of theory in order to obtain the intrinsic two-body dipole
given by:

~m2b = ~mdimer � ~mCH4
� ~mH2O. (2)

(It may be helpful to remind the readers that the dipole
moment of CH4 at equilibrium is zero, but it can be non-zero
when certain modes of methane are excited.)

CCSD(T)-F12b/haTZ level of theory is both high and compu-
tationally feasible for the large data set of electronic energies. For
the dipole moments, MP2 provides a reasonable, if not ‘‘high-
resolution’’ level of theory that is computationally efficient.

2.2 PES and DMS fitting

Three least-squares fits of the 30 467 intrinsic two-body energies
were performed. For the two polynomial fits, the maximum
polynomial order was set to five, and the permutation group is
appropriate for A4B2CD. As noted above, this means that hydro-
gen atoms belonging to different monomers do not permute, so
the PES is not invariant to intermolecular hydrogen exchange,
which is not feasible for the interactions of interest. Thus, the
permutation order is 4!2! = 48. The polynomial variables are
Morse exponentials yij = exp(�rij/a), where a is a parameter
usually between 2.0 and 3.0 au (a = 2.0 au for these PESs), and
rij is the internuclear distance between atom i and j. The choice
of Morse exponentials as variables instead of the simpler inter-
nuclear distances allows the fitted PESs to describe dissociation
without divergence.

The best fitted intrinsic two-body potential, denoted by
PES2b-PI, is based on a rigorous decomposition into primary and
secondary invariant polynomials,24 leading to a total of 10 220 linear
coefficients. PES2b-PI provides the benchmark for our calculations.

A second fitted two-body potential, denoted PES2b-CSM, is a
compact one using symmetrized monomials, where by ‘‘compact’’
we mean that the fit depends explicitly only on intermolecular
distances.27 The starting point to build PES2b-CSM is the full (F)
expansion of the intrinsic potential in terms of symmetrized
monomials,24

VF
2b ¼

XM
m¼0

DbS
YN
io j

y
bij
ij

" #
m ¼

X
bij

� �
; (3)

where M is the maximum polynomial order, D
�b are the linear

coefficients and �b stands for the ordered collection of the
exponents bij; S is the formal operator that symmetrizes
monomials, and N is the number of atoms in the system. A
computationally-efficient factorization scheme to obtain these
polynomials iteratively has been reported.25 The scheme is not
as efficient as the invariant polynomial factorization. However,
it is more straightforward to modify this scheme to create
PES2b-CSM, as we describe next.

To extract the desired subset of polynomials for PES2b-CSM
of the methane–water system, the 28 Morse variables are
defined as shown in Fig. 1. The circled variables correspond
to the thirteen intramolecular Morse variables (ten for methane
plus three for water), and they are set equal to zero. Instead, a
different non-zero value is assigned to each one of the remaining

fifteen intermolecular Morse variables. By calculating monomial
values after these substitutions, all monomials with intra-
molecular dependence return a null value and can be eliminated
from the monomial list used for PES2b-CSM. The ensuing
elimination of some polynomials from the full representation
in eqn (3) can result in a substantial compaction of the number
of terms in that representation.

This compact two-body PES results in a substantial speed-up in
the potential evaluation. For this intrinsic two-body methane–
water potential, PES2b-CSM contains only 841 linear coefficients
(and thus polynomial evaluations), compared to the 10 220 needed
by PES2b-PI. Furthermore, PES2b-CSM fixes by construction the
issue of small non-zero intrinsic two-body energies at large
distances, that can occur in PES2b-PI due to lack of rigorous
separation of some terms in that representation.24

The third fitted two-body potential, denoted PES2b-P24, is a
pairwise one based on 24 non-linear parameters, six for each pair of
intermolecular atomic species (C–O; C–HW; HM–O; HM–HW. HW

indicates a water hydrogen, while HM a hydrogen of the methane
molecule). The mathematical expression for this sum-of-pairs fit is
the one proposed by Varandas and Rodrigues28 and it has been
successfully applied to a number of systems (see, for instance,
ref. 32–34). The potential is expressed as a sum-of-pairs contribu-
tion dependent on distances between the four types of intermole-
cular couples of atoms in the CH4–H2O system (see eqn (4) and (5)).

VP24
2b ¼

X
i; j

V rij
� �

i; j ¼ C;HM;HW;O (4)

V rij
� �
¼ Aij exp �bijrij

� �
�
X
n

wn rij ;R0;ij

� �Cn;ij

rnij
n ¼ 6; 8; 10

(5)

The damping w functions in eqn (5) are defined explicitly in
eqn (8)–(11) of ref. 28. The parameters were obtained using a
least-squares procedure.

The intrinsic two-body dipole moment is represented in
the form

~m2bðRÞ ¼
X
i

wiðRÞ~ri; (6)

Fig. 1 Table of Morse variables for the CH4–H2O system. Red circles indicate
the ten Morse variables dependent on methane intramolecular distances, while
the blue circles show the three water intramolecular Morse variables.
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where R denotes the nuclear configuration and -
ri is the set of

Cartesian coordinates of the ith nucleus. wi(R) is the effective
charge on the ith nucleus, which is a scalar quantity that can be
expanded by polynomials of the Morse variables. The dipole
moment should also be invariant under permutations of like
atoms, so the property of the effective charge wi(R) under
permutations of identical atoms is different from that of the
potential, described as follows. For example, if we exchange
identical nuclei i and j, the configuration transforms from R to
R0, and the effective charge on these two nuclei must satisfy

wj R
0ð Þ;wi R

0ð Þ
� �

¼ wi Rð Þ;wj Rð Þ
� �

(7)

The effective charges on other atoms must be invariant to this
permutation. The details of the DMS fitting can be found in
ref. 35.

Finally, the complete PES and DMS are the sum of the
intrinsic two-body terms, described above, and the methane
and water monomer permutationally-invariant PESs and covariant
DMSs, respectively. The methane monomer PES and DMS are
taken from previous global ab initio ones using the invariant
polynomial approach by Warmbier et al.36 This PES dissociates to
fragments CH3 + H and so is suitable for use in studies of energy
transfer involving highly excited methane. The water monomer
PES is the Partridge–Schwenke one,37 which is spectroscopically
accurate, while for convenience the monomer dipole of H2O is
extracted from the WHBB water dipole moment.35 The full CH4–
H2O potentials using the three intrinsic two-body potentials are
denoted, using obvious notation, PES-PI, PES-CSM and PES-P24.
Note, that it is straightforward to incorporate other monomer
potentials and dipole moment surfaces to improve the accuracy of
the full potential of the dimer for given applications. This is the
‘‘plug and play’’ aspect of the approach given in the title. For
example, other accurate PESs exist for methane, e.g., a recent one
due to Tennyson and co-workers38 as well as a highly accurate
DMS for H2O, also due to Tennyson and co-workers39 can be used.
Thus, for certain applications the complete PES could be more
accurate than a full PES fit to even higher-level ab initio electronic
energies than considered here.

2.3 Diffusion Monte Carlo and MULTIMODE calculations

Standard diffusion Monte Carlo calculations were performed to
obtain the rigorous zero-point energy (ZPE) of the dimer and
the fragments and to characterize the properties of the vibra-
tional ground-state wave function. The simplest unbiased
algorithm40–42 was used in our simulations. Ten ‘‘trajectories’’
were performed for the bound dimer and the fragments; in each
simulation, 20 000 walkers were propagated for 25 000 steps. The
walkers were first equilibrated for 5000 steps and the energies
of the remaining 20 000 steps were collected to compute the
reference energy.

The vibrational ground-state wave function is visualized as
an isosurface. Each walker was optimally aligned into a reference
frame. The space was divided into volume elements and a
statistical analysis was performed for each volume element to
obtain the wave function amplitude in that volume.

Single-reference MULTIMODE43 calculations were done to
calculate the vibrational eigenstates for the high-frequency
intramolecular modes with J = 0. Two approaches were taken.
In the first, we performed a standard normal-mode analysis for
the bound dimer and selected the twelve intramolecular modes
in subsequent vibrational self-consistent field/virtual state
configuration interaction (VSCF/VCI) calculations. Specifically,
a twelve-dimensional Schrödinger equation

Ĥ Qð ÞC Qð Þ ¼ EC Qð Þ (8)

was solved. Q = [Q1 Q2 � � � Q12] denotes the twelve intramolecular
modes. The remaining intermolecular modes were fixed at their
values (zero) at the global minimum. The potential term in the
Hamiltonian was represented by a hierarchical n-mode repre-
sentation; in this twelve-mode calculation, it was truncated at
the 4-mode representation. The representation is adequate to
produce well-converged results, as demonstrated for methane.44

We employed seven harmonic-oscillator wave functions for each
mode as basis to expand the VSCF states. The VSCF ground and
virtual states were then used to expand the CI states in the virtual
state CI calculation (VCI). In the VCI calculation, simultaneous
excitation of up to four modes was done; the maximum excita-
tion of a single mode was seven, six, five and four respectively in
one-, two-, three- and four-mode basis, and the sum of quanta of
excitation was seven. In addition, we exploited the Cs symmetry
of the dimer, which allowed the separation of the Hamiltonian
matrix into two symmetry blocks of sizes 15 374 and 11 122. This
same approach has been successfully applied to calculate the
intramolecular frequencies and IR spectra of H7

+ and D7
+.45

The second approach is the local monomer method
(LMon).46 In LMon, a normal-mode analysis and VSCF/VCI
are applied to each monomer but using the full potential. This
approach has been adopted in various systems including water
clusters,46,47 ice,48,49 and HCl clusters.50 This strategy results in
a substantial reduction in the computational effort. In the
present case, methane has nine high-frequency modes and
water has only three. Therefore, in LMon calculations, one
nine-mode and one three-mode calculation are done, instead
of a larger twelve-mode calculation. Thus, if the same number
of basis functions and the same restrictions for excitation of a
single mode and sum of quanta had been imposed, the size of
the two symmetry blocks for methane would only have been
4350 and 3820. In practice, we were able to increase the number
of basis functions and the maximum excitation for a single
mode to nine without dealing with a bigger CI matrix. Four-
mode representation of the potential was applied in the LMon
calculation of methane, and the sizes of the two symmetry blocks
were 12 995 and 11 315. The three-mode representation was
applied for water monomer, as it has only three intramolecular
modes. The maximum excitation of a single mode was set to ten,
and the sum of quanta of excitation was restricted to be ten,
fifteen and twenty in one-, two- and three-mode basis. The VCI
matrix size was only 1066 even without exploiting symmetry. It is
important to assess the accuracy of this approach for the dimer
as it is the only feasible one for larger complexes such as
methane clathrates.
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Intensities of vibrational transitions were calculated using
the ‘‘dump-restart’’ procedure in MULTIMODE, as described in
ref. 51. In brief, the wave functions of different vibrational
eigenstates were extracted and the transition elements calculated
according to

Raif =
Ð
Ci(Q)ma(Q)Cf(Q)dQ, (9)

where Q is the set of normal coordinates and ma(Q) is the a
component (a = x, y, z) of the dipole moment. Ci and Cf are the
initial and final state of the transition. The intensity is proportional
to the wavenumber (n) of the transition multiplied by the square of
the 2-norm of the three transition element vector [Rxif Ryif Rzif]:

Iif / n
X
a

Raifj j2: (10)

3 Results and discussion
3.1 Fitting accuracy and binding energy

The energy distribution of the 30 467 points and the cumulative
rms error of PES2b-PI are shown in Fig. 2. Many points were
sampled in the attractive region to ensure a good description
near the potential minima. In addition, more than 10 000 energies
are in the range from �50 to 50 cm�1. Most of the corresponding
geometries have a large C–O distance, so the interaction is very
weak. This set of points forces PES2b-PI towards the correct zero
value of the intrinsic two-body energy at large monomer
separation.

The parameters of PES2b-P24 were determined by non-linear
least squares minimization, as usual, and are given in Table 1.
The computational efficiency of the three two-body potentials
was determined by calculating the time needed for 50 000 potential
calls averaged over batches of ten repetitions. Table 2 reports
the number of coefficients, energy-dependent rms errors, and
computational times for the three two-body potentials. PES2b-PI,
as expected, is the most accurate one. PES2b-CSM removes all the
terms containing intramolecular distances, so the number of
coefficients is decreased by an order of magnitude. The effect is
that potential calls are much faster, and only 8% of the time for
PES2b-PI is necessary. PES2b-CSM is globally less accurate with a

higher rms fitting error but as seen below still quite accurate.
Finally, PES2b-P24 is characterized by an even larger rms error,
while the very reduced number of coefficients yields only a
partial reduction of computational costs. The reason is that the
mathematical expressions to evaluate in the case of PES2b-P24
(eqn (4) and (5)) are much more computationally expensive than
the Morse variables.

Two minima are located on the PESs. Both PES-PI and PES-
CSM reproduce the correct geometries indicated in Fig. 3. In
the lower-energy one the water monomer is a hydrogen bond
donor, while it becomes an acceptor in the higher-energy
minimum. Both of the two minima have Cs symmetry. Selected
bond lengths and bond angles of the two minima are listed in
Table 3, from direct ab initio optimization and the PES-PI. The
optimized geometries from PES-PI agree very well with the
CCSD(T)-F12b/haTZ ones, which is expected due to the small
fitting error. In addition, our geometries agree well with pre-
vious calculations, as shown in the table. The energies of the
minima on the PESs as well as the ab initio results with and
without CP correction are listed in Table 4. The CP correction

Fig. 2 Energy distribution of the 30 467 points and cumulative rms error
of PES2b-PI.

Table 1 Parameters for the pairwise fitted two-body potential (PES2b-P24)

C–O C–HW HM–O HM–HW

C6 1.1875 2.3968 0.7648 8.6842
C8 0.9954 0.8829 0.8904 0.9811
C10 0.9996 0.9879 0.9893 0.9799
A 1.3898 15.5380 5.1553 5.3966
b 1.3135 2.3858 1.8655 1.9730
R0 1.0022 1.6074 1.4605 0.4248

Table 2 Number of coefficients, rms fitting error for different energy
regions (cm�1), and computational times (arbitrary units) for the three two-
body PESs. The computational time for PES2b-PI is arbitrarily set equal to
100 to facilitate the comparison

PES2b-PI PES2b-CSM PES2b-P24

No. of coeff. 10 220 841 24
rms (E o 0) 3.4 39.8 135.4
rms (0 o E o 1500) 3.5 95.0 265.2
rms (E 4 1500) 3.5 162.6 643.1
rms (total) 3.5 64.1 204.1
t 100.0 8.0 5.6

Fig. 3 Structures of the two stationary points on the PES: (a) global
minimum; (b) secondary minimum.
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for the global and secondary minima is about 20 cm�1, which is
not large. The binding energy of the global minimum without
CP correction agree very well with the CCSD(T)/CBS result,22

presumably by cancellation of errors due to basis set super-
position and basis incompleteness. Because of the fortuitously
close agreement with the benchmark, the PES was fit to
electronic energies without the CP correction. Our binding
energy for the secondary minimum is slightly larger than the
value reported by Copeland and Tschumper.23 The agreement
between the different PESs is good, apart from PES-P24, which
is not able to accurately give the energies of the two minima. It
also predicts a somewhat different equilibrium geometry.

In Fig. 4 we show two unrelaxed one-dimensional cuts as a
function of the C–O distance and calculated with PES2b-PI and
PES2b-CSM, as well as ab initio energies along these cuts, at the
global minimum and secondary minimum orientations. PES2b-
PI agrees very well with ab initio points, as anticipated by the
small rms fitting error. Generally, PES2b-CSM is also in good
agreement, except between 3.5 and 5.0 Å at the global minimum
orientation. The energies of both intrinsic two-body PESs go to zero
when the distance becomes large, but due to different reasons.
PES2b-CSM is by construction zero at large C–O distances, while
PES2b-PI is zero because we sampled a large number of data in that
region.

To go a step further from the electronic binding energy
to the measurable dissociation energy, we rigorously calculated
the ZPE of the bound dimer and isolated fragments using DMC.
The ZPE of the dimer is 14 510 � 5 cm�1, and the sum of the
ZPEs of the isolated fragments (CH4 + H2O) is 14 663 � 4 cm�1

relative to the global minimum. Thus, we determine the
dissociation energy D0 of the dimer is 153 � 11 cm�1. The
statistical error in the ZPE of the dimer (5 cm�1) and sum of
ZPEs of the isolated fragments (4 cm�1) leads to a statistical
error of 6.4 cm�1 for D0. We give a conservative estimate of the
uncertainty as the sum of the statistical error (6.4 cm�1) and the
systematic error of our De compared to the CCSD(T)/CBS value
(4 cm�1). DMC simulations were also performed on PES-CSM, and
the ZPE of the bound dimer is 14 514 � 6 cm�1, which agrees very
well with the ZPE value from PES-PI, and remarkably predicts a
D0 value (149 cm�1) within the uncertainty range of PES-PI.

3.2 Vibrational analysis

The vibrational ground state wave function obtained from DMC
simulations that employ the PES-PI potential is shown in Fig. 5.
As expected, the motion of heavy atoms (C and O) is more
localized, than the H atom motion. When the isovalue is 50% of
the maximum, the hydrogen wave function is still somewhat
localized, while at 25% of the maximum amplitude, the wave
function is spherical. This indicates that the monomers are
undergoing large-amplitude internal rotation in the bound dimer,
which agrees with the conclusion of experimental findings.52,53

The experimental microwave and far infrared spectra obtained in
these experiments are reproduced reasonably well by simulations
employing an internal-rotation model. In the two experiments, the
authors reported a average distance of 3.70 Å between CH4 and
H2O centers of mass, R0, based on an analysis using a model
Hamiltonian. This distance lies between our global minimum
(3.44 Å) and the secondary minimum (3.77 Å). Our estimate of this
distance using DMC walkers is 3.78 Å. Agreement with the result
from experimental modeling is good but not excellent. The weak
binding of the complex and the presence of two minima with very
different values Re make a highly accurate determination of the
expectation value R very difficult.

The harmonic frequencies of the complex at the global
minimum from CCSD(T)-F12b/haTZ calculations, PES-PI and

Table 3 Bond lengths (in Å) and angle (in degree) of the two minima

Ab initioa PES-PI Ref. 22

Global min. rC–O 3.470 3.472 3.51b, 3.49c

O–H� � �C angle 167.6 168.0 165.6b, 165.3c

Secondary min. rC–O 3.707 3.705 3.76b, 3.71c

a CCSD(T)-F12b/haTZ. b CCSD(T). c SAPT.

Table 4 Interaction energies (cm�1) of the global and secondary minima

Global Secondary

Ab initio with CP 330 223
Ab initio without CP 356 243
PES-PI 357 243
PES-CSM 366 243
PES-P24 279 20

Fig. 4 Two unrelaxed one-dimensional cuts from PES2b-PI, PES2b-CSM
and ab initio calculations: intrinsic two-body energy as a function of C–O
distance at (a) the global minimum orientation, and at (b) the secondary
minimum orientation.
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PES-CSM, are listed in Table 5. In addition, intramolecular
harmonic frequencies from the LMon calculations using PES-PI
and the frequencies of the isolated monomers are given. First,
as seen, the results using PES-PI and PES-CSM are in good
agreement with each other and also with the direct ab initio
results. Note, that even with a ‘‘perfect’’ fit of the intrinsic two-
body interaction, perfect agreement with the CCSD(T)-F12b/
haTZ frequencies is not expected because the monomer potentials
used in the PESs are calculated at a different level of theory. The
frequencies from the LMon and full normal mode analysis using
PES-PI are virtually identical, indicating, as expected, that LMon is a
very good approximation for this weakly bound dimer. Finally, if we
compare the frequencies of the intramolecular modes in the dimer
with those of the isolated monomers, as a consequence of
symmetry breaking, the degeneracy of the frequencies of
methane split in the dimer and the magnitude of the splitting
is certainly large enough to be detected experimentally. We also
did the same analysis for the higher energy minimum and find
that the intramolecular frequencies differ from those of the global
minimum by less than 5 cm�1. This is not surprising given the
weak binding of the monomers and the highly delocalized nature
of the ground vibrational state wave function.

The anharmonic intramolecular fundamental energies at
the global minimum reference configuration with the indicated
approaches are listed in Table 6, and the corresponding IR
spectra are presented in Fig. 6. The spectra in Fig. 6 panel (a)
and (b) are from PES-PI. The LMon frequencies and spectrum
agree well with the calculation using the twelve intramolecular
modes, with differences of no more than 10 cm�1. The good
agreement is expected, since the interaction between water and
methane is weak and the normal modes of the dimer are
localized in the monomer. In addition, the same LMon calcula-
tions were performed using PES-CSM and the spectrum, shown
in Fig. 6c, is in very good agreement with those from the
benchmark PES-PI. Finally, there are significant shifts in the
energies shown in these panels compared to the harmonic
ones. The results in this figure are the ones predicted to guide

experiments. We stress that these spectra are not intended to be
of ‘‘line-list’’ quality. Clearly, such quality would require a more
accurate DMS and exact ro-vibrational calculations of the
transition moment.

3.3 Collisional energy transfer dynamics

In future work, we intend to investigate energy transfer colli-
sions of methane with water using the PESs reported here. To
test the suitability of these PESs for scattering calculations, we
investigated the impact-parameter (b) dependence of the aver-
age trajectory time and average energy transfer, and deter-
mined the maximum impact parameter (bmax) in preliminary
simulations of methane–water collisions. In these simulations
the collisional energy was set to 1 kcal mol�1. The initial
internal energies were set to 10 000 cm�1 and 5000 cm�1 for
methane and water respectively. Starting internal energies were
distributed by means of a microcanonical sampling. For each

Fig. 5 Vibrational ground state wave function of CH4–H2O dimer. The
isovalue is 50% of the maximum wave function amplitude in (a), and 25% in (b).

Table 5 Harmonic frequencies (cm�1) of the global minimum from
indicated sources. (I) Indicates the intermolecular modes; (M) and (W)
the intramolecular modes of methane and water, respectively. Frequencies
of the fragment monomers are also given

Mode Ab initioa PES-PI PES-CSM LMonb Frag.c

1 (I) 49 26 47
2 (I) 74 75 41
3 (I) 80 86 87
4 (I) 87 92 75
5 (I) 111 113 113
6 (I) 170 172 215
7 (M) 1347 1342 1349 1342 1346
8 (M) 1349 1344 1355 1344 1346
9 (M) 1351 1353 1347 1353 1346
10 (M) 1573 1556 1559 1556 1555
11 (M) 1576 1561 1556 1563 1555
12 (W) 1651 1653 1650 1651 1649
13 (M) 3029 3027 3031 3027 3032
14 (M) 3148 3148 3156 3148 3156
15 (M) 3151 3149 3157 3149 3156
16 (M) 3159 3154 3160 3154 3156
17 (W) 3832 3829 3831 3829 3833
18 (W) 3940 3939 3941 3939 3944

a CCSD(T)-F12b/haTZ. b Performed on PES-PI. c Frequencies from the
monomer PESs in ref. 36 and 37.

Table 6 Anharmonic intramolecular fundamental energies (cm�1) of the
global minimum, using the indicated method and PES. (M) and (W)
indicates the intramolecular modes of methane and water

Mode 12-mode/PES-PI LMon/PES-PI LMon/PES-CSM

7 (M) 1300 1306 1313
8 (M) 1298 1308 1319
9 (M) 1309 1315 1311
10 (M) 1521 1525 1527
11 (M) 1521 1529 1533
12 (W) 1587 1596 1595
13 (M) 2894 2894 2903
14 (M) 2993 2997 3004
15 (M) 2994 3000 3007
16 (M) 2992 3003 3008
17 (W) 3657 3653 3655
18 (W) 3741 3750 3753
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PES, small batches of 100 collisional trajectories were evolved
for each chosen value of the impact parameter. Monomers were
initially separated by a distance of 15 a.u. and, after the
collision, each trajectory was stopped when the monomers
were again separated by 15 a.u. As already pointed out in a

previous work,33 the average trajectory time is expected to peak
before the bmax value is reached. After that, the average trajectory
time drops steeply while approaching and finally exceeding bmax.
On the other hand, the b-dependent average energy transfer
(hDEi(b)) is expected to approach zero at bmax and larger impact
parameter values, since interaction and energy transfer become
negligible. We identified bmax as the smallest impact parameter
for which the two previous conditions are met, considering the
condition hDEi(b) E 0 satisfied when |DE| (b) o 0.2 cm�1. Fig. 7
shows that bmax values for PES-PI (12.5 au), PES-CSM (13.0 au),
and PES-P24 (13.0 au) are in very good agreement. Furthermore,
all the three average trajectory times peak at about 2.7 ps for
impact parameter b = 9 au. As expected, collisional energy
transfer simulations are less sensitive to the potential adopted
than energetics and spectroscopy calculations.

4 Summary and conclusions

We have presented three intrinsic two-body PESs of different
accuracy and complexity for the methane–water interaction
energy, leading to three PESs for the methane–water dimer.
The benchmark PES (PES-PI) is very accurate with an rms error
of 3.5 cm�1. It reproduces the ab initio attractive well depth and
harmonic frequencies of the dimer very well. DMC calculations
indicate a weak binding of the dimer, with dissociation energy
of 153 � 11 cm�1, while the two monomers undergo near free
internal rotation. The anharmonic vibrational frequencies and
the intensity of the transitions were predicted by MULTIMODE
calculations. The preliminary simulations of methane–water
collisional energy transfer also show that dynamics simulations
can be readily performed using our PESs.

Two other fitting procedures were considered to represent
the PES. By comparing the well depth, the harmonic and
anharmonic frequencies, as well as maximum impact para-
meter with our best PES (PES-PI), we conclude that PES-CSM is
also quite accurate. The compact fitting procedure is able to
speed up calculations by a factor of about ten. These results
point out that the compact fit is promising for studies of more

Fig. 6 IR spectra of global minimum (a) in the twelve-mode calculation
using PES-PI; (b) in LMon calculation using PES-PI; (c) in LMon calculation
using PES-CSM.

Fig. 7 Evaluation of maximum impact parameter in CH4–H2O scattering simulations for PES-PI, PES-CSM, and PES-P24 potentials.
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complex systems or even condensed phase clusters, where a
larger number of two-body methane–water interactions necessitate
to be considered. In these cases, a substantial reduction of
computational times allows to follow the real dynamics of the
system for much longer times. On the other hand, the sum-of-pairs
potential (PES-P24) fails to identify the minimum structure of the
dimer, and provides an inaccurate binding energy. However, in
the preliminary and less potential-sensitive dynamics simulations,
PES-P24 provides a good estimate of the maximum impact para-
meter. We conclude that pairwise intrinsic two-body potentials
have a restricted range of applicability, but can still be useful for
dynamics simulations of very complex systems, for which too many
ab initio energies could be required to fit a permutationally-
invariant potential.

Finally, the PESs and DMS are available upon request to the
authors.
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