
The 193-nm Photodissociation of **NCO** The 193-nm photolysis of the NCO radical has been investigated.⁸ NCO was generated from the reaction of $CN + O_2$, where the CN was produced by 193-nm photolysis of C_2N_2 close to the nozzle of a pulsed jet. A second 193-nm photon dissociated the NCO radical during the same laser pulse. At this photon energy both the N-CO and the NC-O bonds may break. $N(^{2}D, ^{2}P)$ and CO products have been detected using vacuum ultraviolet laser induced fluorescence. Figure 5 shows a portion of the product laserinduced fluorescence spectrum. A direct measurement of the $N(^{2}D):N(^{2}P)$ branching ratio yielded an upper limit of 72 +/-

18. The CO vibrational distribution was Figure 5 Portion of the product LIF spectrum showing several modeled with prior distributions for each $^{\rm CO\ bands\ and\ N(^2P)\ transitions.}$

of the contributing channels with co-products $N(^4S, ^2D \text{ and } ^2P)$. Combination of the results from the prior model and the direct measurement yielded a branching ratio of $N(^4S)$: $N(^2D)$: $N(^2P)$ of (5.1 +/- 1.8) : (93.6 +/- 4.8) : (1.3 +/- 0.3). For the $N(^2D)$ + CO product channel, the average energy disposal into product relative translation (8%) and CO vibration (24%) was determined, leaving 68% of the available energy to appear as CO rotation. This observation suggests that the geometry of the dissociating state of NCO is likely bent.