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ABSTRACT: A model for energy transfer in the collision between an atom and a highly excited target
molecule has been developed on the basis of classical mechanics and turning point analysis. The
predictions of the model have been tested against the results of trajectory calculations for collisions of
five different target molecules with argon or helium under a variety of temperatures, collision energies,
and initial rotational levels. The model predicts selected moments of the joint probability distribution,
P(Jf,ΔE) with an R2 ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour.
The model provides several insights into the energy transfer process. The joint probability distribution
is strongly dependent on rotational energy transfer and conservation laws and less dependent on
vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion
normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy
transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly
efficient collisions are a natural consequence of the energy transfer and arise due to collisions at “sweet spots” in the space of
impact parameter and molecular orientation.

■ INTRODUCTION

The Lindemann mechanism is essential to the understanding of
many chemical reactions. These include reactions in
combustion chemistry, atmospheric chemistry, explosions, and
interstellar chemistry, to name a few. Although it is now nearly
a century old,1,2 many details of this mechanism are still poorly
understood. It has two seemingly simple steps:

+ ⇌ + * −k kA B A B ( / )1 1 (R1)

* → kB products ( )uni (R2)

where A is typically an atom or small molecule, B is the target
molecule, and B* is the target molecule with vibrational and/or
rotational excitation.
We have previously summarized some of the important work

on this mechanism,3,4 and the field has been extensively
reviewed elsewhere.5−11 Thus, only a brief overview will be
provided here. Experimental techniques have generated a
wealth of data on this process. Some of the more important
methods are chemical activation,12 time-resolved spontaneous
infrared fluorescence,13−15 time-resolved ultraviolet absorp-
tion,16−18 kinetically controlled selective ionization (KCSI),19

high-resolution transient IR absorption spectroscopy,20,21 mass
spectroscopy,22 and time-sliced ion imaging.23 Theoretical and
computational studies have also been informative.3,10,24−33 Of
particular interest to the current study are the computational
investigations of argon collisions with ethane and pyrazine,10

with methane,30,31 with HOCO,33 with the allyl radical,3,32 and
of helium with methane.29

The goal of the current work is to develop a model for
energy transfer in atomic collisions with highly excited
molecules. The reasons for wanting such a model are two-
fold. First, a successful model shows what properties and
concepts are most important to the energy transfer process.
Second, by delineating what is most important in a particular
process, a successful model often suggests computational
approximations that can be used to make calculating the
desired results more efficient.
Several models have previously been reported. Early work by

Barker applied SSH theory to the energy transfer process.34

More recent work includes the approach by Nordholm and
colleagues,35−42 who apply ergodic collision theory to the
energy transfer problem. Their model, when adjusted to reflect
the fact that not all collisions are strong, gives good agreement
with a variety of experiments.43 We have previously reported a
very simple model that with a few adjustable parameters fits the
results of many computational studies.4 However, a disadvant-
age of this model is that it does not provide a method for
estimating the values of the adjustable parameters. The model
presented here has no adjustable parameters; the input
parameters are properties of the atom and molecule and of
their intermolecular potential. The model explicitly takes into
account the shape and mass distribution of the target molecule.
The result of a simple calculation (about one CPU-hour) is the
joint probability distribution (JPD), P(Jf,ΔE), which gives the
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probability that a transition will be made from Ji to Jf and from
Ei to Ei + ΔE, where it is assumed that Ji and Ei either are
known or can be calculated from thermal distributions.
The JPD can be used to calculate any desired moment,

⟨ΔEmΔJn⟩, characterizing the energy transfer process. Jasper
and colleagues44 have recently shown that, given such
moments, it is possible to accurately calculate the pressure-
dependent kinetics of a chemical reaction. In their method, the
moments are calculated by performing trajectory calculations.
The model proposed here allows much more rapid calculation
of the joint probability distribution and its moments. It should
thus make possible more efficient calculations of pressure-
dependent reaction rates.
The model presented here is successful in predicting the JPD

following a single collision from initial conditions selected by
microcanonical sampling. It is based primarily on classical
mechanics and obeys detailed balance. It does not address what
happens after multiple collisions, so it does not rely on or
predict the thermodynamic outcome of such multiple collisions.
The model is intended to provide input data for a master
equation model, as well as to provide a better understanding of
energy transfer in highly excited molecules.
Several physical insights are available from the model. First,

rotational energy transfer in highly excited molecules is more
probable than vibrational energy transfer; the latter can be
considered a perturbation on the former. Second, an accurate
calculation of the results of rotational energy transfer can be
obtained using only the intermolecular potential in conjunction
with conservation laws. Third, rotation changing collisions are
induced by two mechanisms, one involving motion in the
direction normal to the potential energy contours, and a second
involving motion tangent to the contours and perpendicular to
the line-of-centers (LOC). Fourth, highly efficient collisions
(HECs) occur naturally for high-Ji systems as a result of
collisional “sweet spots” where substantial rotational and
vibrational energy can be exchanged.
Table 1 provides a list of acronyms used in the manuscript.

■ MODEL
Outline of the Model. The model is developed in two

stages. First, we analyze motion for a rigid molecule in its
equilibrium configuration interacting with an atom through a
three-dimensional intermolecular potential V(R), where R = {x,
y, z} is the position of the atom relative to the center of mass
(COM) of the molecule at R = {0, 0, 0}. Turning points (TPs)
are then determined for random orientations of the molecule
with respect to the incoming atom and for initial impact
parameters taken between bi = 0 and bi = bmax from a
probability distribution dP(b) = 2πb db. The turning points are

calculated using a straight-line approximation and the
intermolecular potential.
An arbitrary unit vector is chosen for the direction of the

initial rotational angular momentum, Ji, of magnitude Ji. When
there is rotational energy transfer only, then for each turning
point the conservation equations for angular momentum and
energy can be solved to find Jf, the final rotational state of the
molecule, as well to determine its direction relative to the axes
of the molecule. This direction determines the moment of
inertia that is relevant for calculating the associated rotational
energy change, which is also ΔE for the collision under the
assumption that only rotational energy transfer occurs. The
joint probability distribution P(Jf,ΔE) is just given by the
number of turning points that give these values of Jf and ΔE
divided by the total number of turning points considered.
In the second stage, we allow the possibility that vibrational

energy can be transferred, and this energy must be taken into
account when considering the conservation laws. The model
assumes that the probability for the vibrational energy exchange
is given by the adiabaticity principle, but that there are also
limitations on the amount of vibrational energy that can be
transferred depending on the turning point. We calculate the
amount of vibrational energy transferred by using Morse
potentials to evaluate the degree to which the molecule
vibrates. The value of ΔE is then augmented or diminished by
the energy change at the turning point due to the vibration of
the target molecule. In the case when only V ↔ T transfer is
allowed, all of the vibrational energy is used to change ΔE,
whereas if V ↔ R transfer is also allowed, not all of the
vibrational energy changes ΔE because that fraction of it that is
transferred to rotation does not change the internal energy of
the molecule.
In summary, the first level of approximation treats the

rotational exchange exactly to within the straight-line trajectory
assumption and captures much of the physics of the energy
transfer. With a second or third level of approximation, there is
a broadening of the ΔE values or both the ΔE and Jf values due
to the vibration of the molecule. This broadening increases the
agreement of the model with the results of trajectory
calculations. In particular, it allows successful modeling of the
downward energy transfer for systems with Ji = 0. However, we
find that the vibrational energy change is basically a
perturbation on the solution to rotational exchange.

Details of the Model. We calculate the turning point with
a straight-line trajectory approximation using the intermolecular
potential, a selected impact parameter, and a fixed but randomly
chosen molecular orientation. For trajectories that reach the
repulsive region of the potential, the turning point is defined as
the point at which the potential is equal to the collision energy,
as evaluated from the velocity component in the direction
normal to the potential. For straight-line trajectories that do not
reach the repulsive region, we define the turning point as the
point on the incoming trajectory for which the distance along
the gradient to the point where V(R) = 0 is a minimum. This
conforms most closely to the definition used in the trajectories
as the distance of closest approach, although the agreement is
only approximate.
Conservation of angular momentum is summarized by the

vector equation

+ = +L J L Ji i f f (1)

where the vectors are the initial and final orbital and rotational
angular momenta of the system.

Table 1. List of Acronyms Used in the Manuscript

acronym meaning

COM center of mass
GM global minimum
HEC highly efficient collision
JPD joint probability distribution
lhs left-hand side
LOC line of centers
rhs right-hand side
TP turning point
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Conservation of energy is summarized by the scalar equation

+ = +E E E Ei,trans i,internal f,trans f,internal (2)

or

Δ = − = − = −ΔE E E E E Ef,internal i,internal i,trans f,trans trans

(3)

where ΔE is the change in the target molecule’s internal energy,
which must be equal to the negative of the change in the
translational energy of the atom−molecule pair. Because Li =
μvibi and Lf = μvfbf, eqs 1 and 2 can be combined by using the
initial and final impact parameters:

μ
μ

μ
μ

Δ = −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟E

L
b

L
b

(1/2) (1/2)i

i

2
f

f

2

(4)

where the values in the parentheses are the initial and final
relative velocities and bi and bf are the initial and final impact
parameters, respectively. The first term on the rhs of 4 is simply
equal to the initial relative energy Erel. Thus,

μ
μ

Δ = −
⎛
⎝⎜

⎞
⎠⎟E E

L
b

(1/2)rel
f

f

2

(5)

From 1 we see that Lf is the magnitude of Li − ΔJ, where ΔJ
= Jf − Ji. Consequently,

μ
μ

Δ = −
− Δ⎛

⎝⎜
⎞
⎠⎟E E

J
b

L
(1/2)rel

i

f

2

(6)

Although eq 6 gives the solution to the conservation laws
that relates ΔE to ΔJ = Jf − Ji, it is difficult to use. Typically,
although Li is known from the initial conditions, ΔE depends
on ΔJ through both the dependence of rotational energy on ΔJ
and the dependence of the rotational constant on the direction
of ΔJ. Additionally, we do not typically know bf. However,
these problems may be overcome in the straight-line trajectory
approximation by separating the incoming and outgoing
velocities into judiciously chosen components. Let vrel be the
initial velocity corresponding to Erel. By separating this initial
velocity into components normal and tangential to the
equipotential contour of V(R) at the turning point, we have
vrel = vi,n + vi,t. Let the energies corresponding to these
velocities be En and Et. Furthermore, we decompose vi,t into
components perpendicular and parallel to the line of centers
(LOC), defined as the line between the COM and the turning
point. Then, vi,t = vi,t,perp + vi,t,par.
Now consider the motion along each of these three

directions. For incoming motion along the normal, the
equipotential contours perpendicular to the motion guarantee
that the outgoing motion is also along the normal, so that the
directions of Li,n and Lf,n are along the same line but opposite to
one another; thus, ΔJn must also be along this line. Similarly,
motion in the tangential direction perpendicular to the LOC
encounters a “hill” or “valley” in the potential. The incoming
motion is along an equipotential contour and, to first order, the
change in potential is perpendicular to this direction. Thus, the
motion remains along the tangential direction as it encounters
the potential, where it is reflected back on itself. Again, the
directions of Li,t,perp and Lf,t,perp are along the same line but
opposite to one another; thus, ΔJt,perp must also be along the
same line. Motion along the third direction tangential to the

normal and parallel to the LOC is unimportant for changes in
rotation because the impact parameter is zero.
As we have just seen, for motion along the normal direction

and along the tangential direction parallel to the LOC, the
initial and final trajectories are along the same line, and thus the
initial and final impact parameters are equal. As explained
above, the vectors Li, ΔJ, and Lf are collinear, so that their
vector addition can be replaced by the normal addition of their
magnitudes. For example, along the normal direction, the initial
and final impact parameters are equal to the shortest distance
between the COM and a line that passes through the turning
point and is parallel to the normal (or gradient) to the
potential. Let this impact parameter be denoted by bn. Then Li,n
= μvi,nbn, and Li,n−ΔJn = Li,n − ΔJn, so that

μ
μ

Δ = −
− Δ⎛

⎝⎜
⎞
⎠⎟E J J E

L J

b
( , ) (1/2)i,n f,n n

i,n n

n

2

(7)

where the dependence of ΔE on Ji and Jf has been made
explicit, because by assumption so far, we are considering
changes only in internal rotational energy. Because ΔJn = Jf,n −
Ji,n, the equation can easily be solved for Jf,n given Ji,n. The value
of Ji,n can be determined by the following procedure. The
magnitude of the total initial rotational angular momentum, Ji,
is given by the problem or selected from a rotational
temperature. Given Ji, we choose an arbitrary axis for the
initial rotation and project Ji onto the direction of ΔJn to find
Ji,n. We will then need to average over initial rotational axes as
well as over the TPs. The direction for ΔJn is determined from
the turning point analysis (see below for the calculation of this
direction).
Similar equations hold for motion along vt,perp, where En is

replaced by Et,perp
min and bt,perp is equal to the distance from the

COM to the turning point, and for motion along vt,par, where En
is replaced by Et,par and bt,par = 0. In the former case, the
combined conservation equation is thus

μ
μ

Δ = −
− Δ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟E J J E

L J

b
( , ) 1/2i,t f,t t,perp

min i,n n

t,perp

2

(8)

In the latter case, as mentioned earlier, the velocity does not
contribute to the angular momentum (i.e., there is an elastic
exchange of momenta) and ΔJt,par is zero. As shown in Figure 2
of ref 4, Et,perp

min is given by the smaller of the value of the
potential at the turning point and the value of Et,perp = (1/
2)μvt,perp

2.
For motions along vn and along vt,perp, eqs 7 and 8 can easily

be solved for Jf,n and Jf,t, respectively. There are, in principle, as
many as two solutions to each equation, but in many cases the
only physically realistic solution is the trivial one for which Jf =
Ji, i.e., for which the collision is elastic.
The directions of all vectors in the equation Jf = Jf,n + Jf,t are

needed to determine the rotational constants, which, for this
classical approach, are simply related to the moments of inertia
around corresponding rotational vectors. For motion along vn,
the direction of ΔJn is given by vn × bn, where bn is a vector of
length bn from the COM to the nearest point on a line through
the turning point and parallel to the normal to the potential
surface. For motion along vt,perp, the direction of ΔJt,perp is given
by vt,perp × bt,perp, where bt,perp is a vector of length bt,perp from
the COM to the turning point. For many initial Ji directions,
the projection onto ΔJn or ΔJt.perp will be negative. Positive
projections correspond to cases where Li is in the same
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direction as the rotation, so that the collision increases Ji,
whereas negative projections correspond to cases where Li is in
the opposite direction as the rotation, so that the collision
decreases Ji. Once Jf is determined, the rotational constant may
be calculated by determining the moment of inertia of the
molecule about its direction and by then converting this
moment into a rotational constant. We calculate Jf from Jf = Ji
− (Ji,n + Ji,t) + (Jf,n + Jf,t). This step completes the solution of eq
6, from which we find for each turning point 1−4 pairs of
values Jf and ΔE that are consistent with conservation of both
energy and angular momentum for the situation when only
rotational energy change is considered.
An example is helpful in understanding the arguments above.

We consider solution of eqs 7 and 8 for motion normal to the
potential surface and tangential to both the normal and the
LOC, respectively. The specific case is for the allyl radical in its
global minimum configuration. Euler angles of {χ, θ, ϕ} = {0, 0,
0} correspond to having all the atoms in the x−y plane with the
major C−C−C axis along the x direction. For this particular
example, the molecule is rotated but is still in the x−y plane.
Figure 1 shows a depiction of the potential energy surface and
of various vectors important in the analysis, as explained in the
caption.

Figure 2 depicts graphical solutions to eqs 7 and 8. The
labeling is for the case of eq 7. There are in each case two
conditions for solution, one for Ji,n < 0 shown in Figure 2a and
one for Ji,n > 0 shown in Figure 2b. In each case, the rhs of the
equation is represented by a parabola opening downward in
ΔE. The dotted parts of the blue parabolae represent locations
where Lf is positive and greater than Li, a situation that is

inconsistent with the model. The lhs of the equation is simply
the difference in rotational energy, (Jf,n

2 − Ji,n
2) Brot, which is

also parabolic in shape but opening upward in ΔE. The red
curve crosses the ΔE = 0 axis at the elastic point, where Jf,n =
Ji,n. The black dots in the figure depict the points {Jf,n, ΔE} that
satisfy the conservation laws. For the case depicted in Figure 2a,
Ji = 30, Ji,n = −20, and Jf,n = −20 or −1, and for the case
depicted in Figure 2b, Ji = 30, Ji,n = 5, and Jf,n = 5 or 20.7. Given
that the red parabolae must go through the elastic points, it is
clear from the geometry that Jf,n < 0 when Ji,n < 0 (Figure 2a),
and that Jf,n > 0 when Ji,n > 0 (Figure 2b). Note that when the
magnitude Ji,n is relatively large and negative, it is possible for
the collision to cause loss of nearly all the rotational energy, as
shown in the not atypical situation of Figure 2a.
The model to this point is based on angular momentum and

energy conservation for an atom colliding with a rigid rotor
under a realistic potential. Although it can reproduce the
trajectory results fairly accurately, as we will see later, it cannot
account for one important feature. When Ji is small, there is no
probability for energy transfer more negative than the rotational
energy corresponding to Ji. Specifically, when Ji is zero, there is
no probability for any negative value of ΔE if the molecule is
rigid. Trajectories using realistic potentials and allowing the
target molecule to change its shape do show probability for
negative values of ΔE, even for Ji = 0, and it seems intuitive that
the reason is that the target molecule is not rigid−it vibrates.
One way to look at this is that the energy at the turning point
for the equilibrium configuration of the rigid molecule changes
as the molecule vibrates. We model the amount of vibrational
energy available for the collision as the difference in energy

Figure 1. The blue contour is where V(R) = En, the red contour is
where V(R) = 0, and the dashed red contour is where V(R) is a
minimum. The black line is the direction of the incoming atom with an
impact parameter given by its y coordinate. The blue line is normal to
the potential at the turning point, which is at the end of this line that is
closest to the COM. The dashed blue line is the extension of the
normal line to the point along this line closest to the COM. The
dashed red line from this point to the COM has the length bn. The
dashed red line from the COM to the turning point is the line-of-
centers. The solid orange line is the tangent to the surface at the
turning point and is in the plane of the incident atom and the surface
normal. The contours are for a cross section through the potential in
the x−y plane, whereas the vectors are projected onto that plane.

Figure 2. Graphical solution to eq 7 (intersections of solid lines). The
red curves give the rotational energy, and the blue curves give −ΔEtrans.
The black dots give locations for {Jf, ΔE} that satisfy conservation of
both energy and angular momentum. For this example, Ji,n = −20 in
(a) and Ji,n = 5 in (b).
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between the turning point energy of the rigid molecule versus
the turning point energy of the molecule in a new configuration
allowed by vibration. The vibrational energy can then be used
by the collision either for conversion to/from rotational energy,
allowing some different final rotation levels than those
calculated for the rigid molecule, or for conversion to/from
translational energy. Implementation of this vibrational energy
model requires knowledge of how the molecule vibrates.
There are many models that can be used to predict the

atomic positions as the target molecule vibrates. An accurate
one is to run a trajectory on the excited molecule with an
appropriate intramolecular potential. Though accurate, this
level of effort is probably more than needed, because the
vibrational correction to the rotational solution is small. One
method that seems partially successful is to make a simple force
field model based on stretches only and to use that model to
calculate atomic positions. Some of the comparisons reported
below use trajectories to generate atomic positions, whereas
some use this simple force field model. In the simple force field
model, the stretching motion between each pair of bonded
atoms is treated as a Morse oscillator using the masses of the
atoms, generic tables for frequencies, and generic tables of bond
dissociation energies. The amount of energy in each oscillator is
given by equipartition, and the positions of the atoms are
chosen by letting each bond take a distance sampled from the
probability of observing that distance in the Morse oscillator.
We now suppose that vibrational energy is allowed to be

exchanged from the target molecule either to/from the
translational motion between the atom and molecule (V ↔ T
transfer) or to/from the rotational motion of the molecule (V
↔ R transfer). Combinations of {ΔE, Jf} in addition to those
calculated from eqs 7 and 8 would then be allowed. Let the
change in internal energy ΔE be written as the sum of the
changes in internal rotational energy and vibrational energy:
ΔE = ΔErot + ΔEvib. The amount of energy that is taken from
or added to vibration then adds to or subtracts from the final
rotational and translational energies; that is, ΔEvib =
−[VTP(equilibrium) − VTP(vibrated)], where “equilibrium”
stands for the original configuration of the molecule and
“vibrated” stands for the configuration of the molecule in its
vibrationally stretched or compressed configuration.
If only V ↔ T energy transfer occurs, then ΔJ is unchanged,

while ΔE is changed by the value of ΔEvib. If V ↔ R exchange
also occurs, then the result is somewhat more complicated. To
the extent that ΔErot increases/decreases as ΔEvib decreases/
increases, ΔE is unchanged. But the only way to change ΔErot
while conserving energy is to also change the translational
energy. Thus, V ↔ R exchange always also involves some V ↔
T exchange. The model results described below can be
presented in three ways. In the first, we assume no vibrational
energy is transferred, in the second, we assume that only V↔ T
energy transfer occurs, whereas in the third we assume that V
↔ R transfer also occurs. The V ↔ T transfer has the effect of
broadening the JPD in the ΔE dimension, whereas the V ↔ R
transfer has the effect of broadening the JPD in the ΔJ (or Jf)
dimension. The V ↔ R transfer also has the effect of increasing
probability slightly for large ΔJ transitions.
The remaining question is how to calculate the probability

for the situation in which both rotational and vibrational energy
contribute to the change in internal energy. We assume that
this probability is the product of a probability for the rotational
energy change times a probability for the vibrational energy

change. Because we are averaging over the initial rotational
axes, the probability for rotational transfer may be taken to be

=P 1rot (9)

that is, every solution to the eqs 7 and 8 is given the same
probability.
The vibrational probability, as in our previous paper,4 is

assumed to be controlled by the adiabaticity principle. The
probability is given by a density of states ratio times exp(−τc/
τv), where τc is the collision time and τv is the vibrational
period:

ρ
ρ

τ τ=
+ Δ

−P
E E

E
( )

( )
exp[ / ]vib

i vib

i
c v

(10)

where ρ is the density of vibrational levels. The vibrational
period can be converted to the vibrational energy by noting
that, in cm−1, ΔEvib = ν/c = 1/(cτv). We can use a similar
transformation to define an energy associated with the collision,
in cm−1, as ΔEcol = 1/(cτc). With these substitutions, eq 10
becomes

ρ
ρ

=
+ Δ

−|Δ | | |P
E E

E
E E

( )
( )

exp[ / ]vib
i vib

i
vib col

(11)

This formula is essentially the same as eq 3 in ref 4, except that
dforce/vloc has been replaced by 1/|Ecol|. We take Ecol to be the
value of the potential energy at the turning point. The absolute
value for ΔEvib is used as described previously;4 the probability
falls off for either positive or negative ΔEvib. The absolute value
for Ecol is included because the incoming velocity either pushes
on the impact parameter (lever arm) when Ecol is positive or
pulls on it when Ecol is negative; in either case it is the
magnitude that matters. If not known, the density of states
factors in the pre-exponential to eq 11 can be replaced by the
classical values:

ρ
ρ
+ Δ

=
+ Δ

− +⎛
⎝⎜

⎞
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E E
E

E E
E

( )
( )

s
i vib

i

i vib

i

( 1) (1/2)

(12)

where s is 3N − 6(5), and N is the number of atoms in the
molecular target. We note that the current model extends the
Landau−Teller theory to the case where there are many
vibrational modes and where the density of vibrational levels is
very high. A discussion of this extension is found in the section
c under “Discussion of Assumptions” in that paper.4

In summary, the contribution to P(Jf, ΔE) from each turning
point is given by ProtPvib, where Jf and ΔE are determined given
by the solutions to eqs 6−8, where ΔE = ΔErot + ΔEvib, and
where Prot and Pvib are given by the above equations.

Computational Implementation of the Model. The
inputs to the model are (a) the mass of the atomic collision
partner, (b) the number of atoms in the target molecule, their
masses, and their equilibrium positions, (c) an intermolecular
potential describing the interaction of the incoming atom with
the target molecule, (d) a table of bond stretches with Morse
potential parameters (masses, bond dissociation energies, bond
frequencies), and (e) the relative collision energy or transla-
tional temperature and the initial rotational level of the
molecule or the rotational temperature. The intermolecular
potential is often taken as a sum of pairwise interactions, but
the model is not limited to this simple form. The table of bond
stretching properties can be populated from standard tables of
bond dissociation energies and frequencies. Additionally
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needed are parameters describing the desired resolution of the
joint probability distribution, for example, the minimum value
of ΔE, the ΔE bin size, and number of ΔE bins, the minimum
value of Jf, the Jf bin size and number of Jf bins. There is no
computational penalty for choosing small bin sizes; only the
storage increases.
The computation proceeds in two steps. First, a number of

turning points are calculated, and second, the ΔE and Jf (or
their ranges) are calculated for each turning point. A
convenient feature of this approach is that the turning point
calculation does not depend on Ji or rotational temperature, but
only on the relative collision energy or the translational
temperature. The second part of the calculation does depend
on Ji or the rotational temperature, but the dependence on
collision energy or translational temperature is contained in the
results of the turning point calculation. This means that
calculations for different Ji or rotational temperatures can use
the same calculation of the turning points so long as the
collision energy or translational temperature is the same.
Calculation of the turning points is performed using straight-

line trajectories with an impact parameter chosen from a
suitably weighted range and an orientation of the target
molecule relative to the direction of the incoming atom chosen
by random Euler angle rotations. When the energy at the
turning point is positive, the criterion for the turning point is
that the collision energy evaluated in a direction normal to the
potential at the turning point should be equal to the potential
of the rigid molecule at the turning point. When the energy at
the turning point is negative, the criterion is that the turning
point is the location where the incoming atom is closest to the
point of zero potential energy. This latter selection is used to
conform approximately with the trajectory criterion, which uses
the distance of closest approach. Both of these turning point
calculations require methods of successive approximations.
Typically, 4000 turning points are sufficient to characterize the
main features of the joint probability distribution, and these are
formed in our implementation from 400 molecular orientations
with 10 impact parameters for each orientation.
The calculation of ΔE and Jf (or their ranges) from each

turning point proceeds as outlined in the section above. For
each turning point, 1−5 values of the initial direction of Ji are
chosen at random. In addition, five values of ΔEvib are chosen
by calculating the variation of potential energy at the turning
point as the molecule vibrates. The vibration is modeled by the
simple force field described above or is taken from frames of a
trajectory, when available. Twelve random vibrational config-
urations are calculated or taken from the trajectory or force
field, and five of these are chosen at random to determine ΔEvib
for any turning point. If only V ↔ T transfer is allowed, then
ΔE is changed by the amount of ΔEvib, because ΔE = ΔErot +
ΔEvib. If V ↔ R transfer is allowed, then a random fraction of
ΔEvib is allowed to augment the collision energy so as to change
the solution to the rotational energy transfer. This solution is
obtained by treating the target molecule as a rigid body. The
value of the final rotational level, Jf, is determined by solving the
coupled angular momentum and energy conservation equation
for each component contributing to rotational change, the
normal component and the component of the tangential
motion that is perpendicular to the line of centers. Once a final
state corresponding to Jf and ΔE = ΔEvib + ΔErot is determined
to satisfy the conservation laws, its probability is determined by
the product of Prot, given in eq 9, and Pvib, given in eq 11. These
probabilities for each turning point are binned, summed, and

normalized to give the joint probability distribution. Typically,
sufficient accuracy is obtained from the average of 400
orientations times 10 impact parameters each times 5 values
of ΔEvib each times 1−5 initial Ji orientations each, where the
number of initial orientations increases with the magnitude of
Ji. Computation of the turning points takes less that 1 CPU-
hour, whereas computation of the JPD for a single Ji (or Trot)
and Ei (or Ttrans) takes less than 30 CPU-min using
Mathematica on a MacBook Air.

■ RESULTS: COMPARISON TO FULL TRAJECTORY
CALCULATIONS

Evaluation of Assumptions Using Statistical Compar-
isons. Statistical analysis of results from each step of the
computation helps to evaluate the model, as summarized in the
following subsections.

Calculation of the Turning Points. The turning point
calculation was investigated by detailed comparison to the
trajectory results for argon collisions with trans-HOCO.33 For
both the model calculations and the trajectory calculations, we
used the “Pairwise-18” potential. Comparison of the turning
point distribution calculated by the model with the results of
the trajectories is shown in Figure 3a, where the orientations
and impact parameters are uncorrelated between the model and
the trajectories. Figure 3b shows similar results but for model
and trajectory calculations on allyl in its global minimum
configuration (GM allyl).32 As is clear from these figures, the
range and general shape of the distributions are in reasonable
agreement.
Alternately, one can use the same orientation and impact

parameter in the model as for each trajectory and compare the
results. An informative method for comparison is to make
correlation plots of model prediction and trajectory result for
the same property; to the extent that the points fall on the
(red) line of unit slope, the model and trajectory results agree.
These plots can also be used to quantify the correlation by
evaluating the R2 parameter. For example, Figure 3c,d show the
correlations for the total TP distance from the COM for the
turning points with positive and negative potential energy,
respectively, from data set of about 25 000 pairs. The R2 values
are 0.951 and 0.755, respectively. The agreement for the
turning points with negative potential energy is not as good as
for those with positive potential energy partly because the
definition of turning point is not quite the same for the model
and the trajectories.
It is clear from these results that the method for determining

the turning points is reasonable and fairly accurate. It is
interesting that it can be so successful given that the trajectory
results are for a vibrating molecule and the model results are for
a rigid one. Apparently, the turning points are determined
largely by the equilibrium structure of the molecule, which is, of
course, close to the vibrationally averaged structure.

Calculation of Jf and ΔE. The mapping between turning
points and the variables of the joint probability distribution, Jf
and ΔE, can also be compared between the model and the
trajectories. A detailed comparison specific to each of the
systems studied is presented in the sections that follow, whereas
general correlations will be presented here. Several levels of the
model were considered. The “standard” model, level 2,
calculated the change in vibrational energy from the simple
force field approach and assumed that all of the vibrational
energy is exchanged to translation; i.e., no V ↔ R energy
transfer was considered. A simpler model, level 1, was also
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considered in which no vibrational energy change is allowed
only rotational energy is exchanged. A more sophisticated
model, level 3, was considered in which both V ↔ T and V ↔
R energy transfer were allowed. Finally, for systems where there
were trajectory data that could be used to estimate the
vibrational energy change at the turning point, these data were
used in place of the simple force field approach.
We compared the model predictions to the results of several

trajectory studies: argon with the allyl radical,3,32 argon with
ethane,10 argon with pyrazine,10 argon with trans-HOCO,33

argon with methane,30 and helium with methane.29 Considering
all the combinations, we compared model predictions to
trajectory results for four target molecules with a total of 14
conditions for which information on the complete JPD was
available. In addition, there were 16 conditions for argon or

helium with methane for which some averaged information was
available.29,30 An overview of the agreement between the model
calculation and previous trajectory results can be made in the
following way. For each trajectory result, we either calculate
from the JPD or take from the reported results the values for
the following moments of the distribution: ⟨ΔEup⟩, ⟨ΔEdown⟩,
⟨ΔE⟩, ΔErms, ⟨ΔJup⟩, ⟨ΔJdown⟩, ⟨Jf⟩, and ΔJrms. Definitions of the
first four of these are given in a paper by Jasper and Miller;29

the last four are similarly defined. However, note that the sign
convention for ⟨ΔEdown⟩ is negative for our work and positive
for that of Jasper and Miller. For the energy changes, there were
a total of 89 comparison value pairs, whereas for the rotational
changes there were a total of 44 comparison value pairs. For the
level 2 model (including V ↔ T transfer but not V ↔ R
transfer) and using trajectory data where available, the
correlation plot of the predicted energy values vs the trajectory
values shown in Figure 4a gives a nearly unit slope line with R2

= 0.90. An expanded version of the plot near the origin of the
axes is shown in Figure 4b. A similar plot in Figure 4c for the
predicted rotational changes gives a quite accurate unit slope
line with R2 = 0.86. These and other combinations are listed in
Table 2, from which several conclusions can be made. First,
with the exception of those cases where Ji = 0, the level 1

Figure 3. (a) Comparison of the turning point distributions for trans-
HOCO between the model calculations (red) and the trajectory
calculations (blue) for uncorrelated choices of impact parameters and
orientations. (b) Similar data, except for model and trajectory
calculations on allyl in its global minimum configuration. (c)
Correlation plot for the total length of the vector from the COM to
the TP for turning points with positive potential. (d) Correlation plot
for the total length of the vector from the COM to the TP for turning
points with negative potential.

Figure 4. (a) Correlation plot for the model prediction of average
energy changes of the trajectory results. (b) Expanded version of (a)
emphasizing small energy changes. (c) Correlation plot for the model
prediction of average rotational changes of the trajectory results. In all
cases, the model calculation was level 2 and used trajectory results
where available to determine the vibrational energy.
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calculation is actually almost as good as level 2 or 3; that is,
merely taking account of rotational energy transfer provides most of
the solution. Of course, for cases where Ji = 0, it is not possible
for ΔE to be smaller than zero if only rotational energy transfer
is allowed, so for these cases, we must include some vibrational
energy transfer. However, as seen from comparison on the
second and last lines in the table, there is no better agreement
by adding V ↔ R transfer to V ↔ T transfer. In addition, the
calculation of the JPD is several times longer with inclusion of
V ↔ R transfer. Consequently, most of the detailed results to
be presented below will be calculated with the Level 2 model.
From lines three and four of the table, we see that use of the
trajectory results rather than the simple force field model for
the vibration improves slightly the agreement in rotational level
moments of the distribution but has little effect on the energy
moments.
More detailed comparisons for the individual systems follow.
Ar + Allyl with Ji = 0, 136, 184, and 216 and Erel= 3500

cm−1. Trajectory results for the argon−allyl system have been
reported previously.3,32 Figure 5 shows a comparison of the
model predictions and the trajectory results for Ji = 184 using
the level 2 version of the model and using trajectory results to
determine the variation in TP energy with vibration. Similar
results were obtained for Ji = 0, Ji = 136, and Ji = 216. Table 3
summarizes the averaged results. In addition, for systems such
as argon−allyl where the JPD, P(Jf, ΔE), from the trajectory
results is reported, one can compare the probability in each
model bin (of Jf, ΔE) to the probability in each trajectory bin.
For example, for the Ji = 136, 184, and 216 systems, the JPD is
binned into 80−92 ΔE bins times 15−25 Jf bins. For Ji = 0,
there are 280 ΔE bins and 150 Jf bins. Most of these have low
probabilities, contributing little to the sum of squared
differences. Nevertheless, the R2 values for the comparisons
are useful. For Ji = 0, R2 = 0.19, Ji = 136, R2 = 0.972, for Ji = 184,
R2 = 0.95, and for Ji = 216, R2 = 0.49.
Ar + Ethane with Ji = 37.47, 18.74, and 9.38 for T =

300 K and with Ji = 37.47, 26.50, and 18.74 for T = 1200
K. Trajectory results for the argon−ethane system have been
reported previously.10 The JPD for the trajectory data has been
summarized by a formula in the Supporting Information to ref
10 that is used here for comparison. For argon−ethane, argon−
methane, and helium−methane the authors of the trajectory
results employed Buckingham (or “Exponential-6”) intermo-
lecular potentials. Though convenient and simple, this potential
form has the disadvantage that as the distance approaches zero,
the potential goes to negative infinity rather than to a positive
number. The calculation of ΔEvib requires that the potential at
the turning point be evaluated as the molecule vibrates, and
occasionally the vibration places an atom of the molecule in the
region of the Buckingham potential that is unrealistic. For this

reason, our calculations were performed with a potential of a
slightly different form given by Varandas and Rodrigues.45 The
Varandas−Rodrigues potential has 12 parameters. These were
fit to give good agreement between the Varandas−Rodrigues
and Buckingham potentials for Ar−C and Ar−H over the
energy region up to 3000 cm−1. The fits were excellent. For 800
comparison points in this energy region, the Varandas−
Rodrigues Ar−H potential fit the Buckingham one with an R2

= 1.0, whereas for the Ar−C potential the fit had an R2 =
0.9997. The fitting parameters were for Ar−H, {C6, C8, C10,
R0, A, b} = {31.6204, −2084.33, 12179.5, 2.84941, 18.5,
11.6957}, and for Ar−C, {C6, C8, C10, R0, A, b} = {219.915,
99.9992, 26512., 17.6855, 189.98, 1.95825}. In both cases, λ
was taken as unity.
Figure 6 shows a comparison of the model predictions and

the trajectory results for Ji = 18.74, with T = 300 K and for level
2 theory with the force field calculation of the vibrational
change in energy at the TP. Similar plots were obtained for Ji =
37.47 and Ji = 9.38 with T = 300 K and for Ji = 37.47, Ji = 26.50,
and Ji = 18.74 with T = 1200 K. The trajectory results were

Table 2. R2 Values for Model Predictions of Trajectory
Results

level molecule set vibration method energy
rotational
level

1 all except those with
Ji = 0

(not relevant) 0.88 0.91

2 all trajectory, where
available

0.90 0.86

2 allyl, trans-HOCO force field 0.83 0.88
2 allyl, trans-HOCO trajectory 0.90 0.86
3 all trajectory, where

available
0.89 0.86

Figure 5. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with allyl starting in the GM configuration with Ji = 184 and for a
collision energy of 10.0 kcal/mol (3500 cm−1). The contours in the
bottom two panels represent a log 10 scale of probability and are
separated by 1.0 log units. The trajectory data contours are above
those for the model results; the ordinate is ΔE/cm−1, and the abscissa
is Jf/ℏ. The top panels give the trajectory results (red dots) and the
model predictions (blue solid curve) for, on the top, the energy
distribution summed over Jf and, below it, the rotational distribution
summed over ΔE.
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performed with a maximum impact parameter of 5−7, whereas
the model calculations were performed with 6. Table 4
summarizes the averaged results. Comparison of the model
and trajectory JPD values bin by bin gives the following results:
for T = 300 K, Ji = 9.38, R2 = 0.17, for Ji = 18.74, R2 = 0.54, and
for Ji = 37.47, R2 = 0.50, and for T = 1200 K, Ji = 18.74, R2 =
0.71, for Ji = 26.50, R2 = 0.63, and for Ji = 37.47, R2 = 0.53.

Ar + Pyrazine with Ji = 82.6, 45.3, and 22.6, and T =
300 K. Trajectory results for the argon−pyrazine system have
been reported previously.10 The JPD for the trajectory data has
been summarized by a formula in the Supporting Information
to ref 10 that is used here for comparison. Figure 7 shows a
comparison of the model predictions and the trajectory results
for Ji = 45.3 with T = 300 K. Similar plots were obtained for Ji =
22.6 and Ji = 82.7 with T = 300 K. The trajectory studies
suggested a maximum impact parameter of 10, but this led to
very few collisions that changed the energy. The radius of
pyrazine at a potential energy of zero is less than 5, so we used a
maximum impact parameter of 6. The net effect of this change
is to decrease the prominence of the elastic peak. Table 5
summarizes the averaged results. Comparison of the model and
trajectory JPD values bin by bin gives the following results. For
T = 300 K we found for Ji = 22.6, R2 = 0.22, for Ji = 45.3, R2 =
0.35, and for Ji = 82.7, R2 = 0.30.

Ar + trans-HOCO with Ji = 0 and Erel = 350 cm−1.
Trajectory results for the argon−trans-HOCO system have
been reported previously.33 Figure 8 shows a comparison of the
model predictions and the trajectory results for Ji = 0 using the
level 2 model and the force field model for determination of the
vibrational energy. The trajectory studies and the model
calculations were both performed with 6.09 as the maximum
impact parameter. Table 6 summarizes the averaged results.
Comparison of the model and trajectory JPD values bin by bin
gives R2 = 0.44.

Ar + Methane with T = 300−2000 K. Trajectory results
for the argon−methane system have been reported previ-
ously.30 As mentioned above, for argon−ethane, argon−
methane, and helium−methane, our calculations were
performed with an equivalent Varandas−Rodrigues potential.45
For 800 comparison points in this energy region, the
Varandas−Rodrigues Ar−H potential fit the Buckingham one
with an R2 = 1.0, whereas for the Ar−C potential the fit also
had an R2 = 1.0. The fitting parameters were for Ar−H, {C6,
C8, C10, R0, A, b} = {20.4295, 426.009, 12300, 7.2404,
8.44978, 1.65192}, and for Ar−C, {C6, C8, C10, R0, A, b} =
{28.248, 1173.97, 26512., 15.6532, 199.653, 1.98589}. In both
cases, λ was taken as unity.
Figure 9 shows the model predictions for T = 1150 K using

level 2 and the force field method for estimating the vibrational
energy. The detailed trajectory results were not published.
Table 7 summarizes the averaged level-2 results for all of the
conditions studied. The trajectory studies and the model
calculations were both performed with 4.25 as the maximum
impact parameter.

He + Methane with Ji = 0−40 and T = 300−2000 K.
Trajectory results for the argon−methane system have been

Table 3. Averaged Energy Transfer Parameters for Argon−Allyl Collisionsa

Ji Etrans ⟨ΔEup⟩ ⟨ΔEdown⟩ ⟨ΔE⟩ ΔErms
0 700 (91/205) (−70/−201) (38/113) (190/310)

136 3500 (729/398) (−1140/ −1289) (−297/−4714) (1733/1641)
184 3500 (459/382) (−1676/1658) (−801/−632) (2465/2034)
216 3500 (452/812) (−2122/−2441) (−1102/−677) (3026/2139)

Ji Etrans ⟨ΔJup⟩ ⟨ΔJdown⟩ ⟨ΔJ⟩ ΔJrms
0 700 (6/19) (0/0) (6/19) (12/24)

136 3500 (19/21) (−28/−37) (−3/−7) (15/24)
184 3500 (17/20) (−29/−42) (−5/−9) (16/28)
216 3500 (17/18) (−30/−40) (−6/−9) (18/27)

aEnergies are in cm−1 and entries in parentheses give (model results/trajectory results3,32).

Figure 6. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with ethane with Ji = 18.7 and for a translational temperature of 300 K.
The contours in the bottom two panels represent a log 10 scale of
probability and are separated by 1.0 log units. The trajectory data
contours are above those for the model results; the ordinate is ΔE/
cm−1, and the abscissa is Jf/ℏ. The top panels give the trajectory results
(red dots) and the model predictions (blue solid curve) for, on the
top, the energy distribution summed over Jf and, below it, the
rotational distribution summed over ΔE.
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reported previously.29 Our calculations again were performed
with a potential of a slightly different form, as given by
Varandas and Rodrigues.45 The fits were excellent. For 730

comparison points in the relevant energy region, the Varandas−
Rodrigues Ar−H potential fit the Buckingham one with an R2 =
0.9989, whereas for the Ar−C potential the fit also had an R2 =
0.9989. The fitting parameters were for Ar−H, {C6, C8, C10,
R0, A, b} = {694.945, 1000.7, 12300, 10.9116, 14499.5,
2.5608}, and for Ar−C, {C6, C8, C10, R0, A, b} = {3800.12,
50.0013, 26512, 8.47305, 7600, 2.01001}. In both cases, λ was
taken as unity.
Figure 10 shows the model predictions for Ji = 20 with T =

1150 K using level 2 and the force field method for estimating
the vibrational energy. The detailed trajectory results were not
published. Table 8 summarizes the averaged level-2 results for
all of the conditions studied. The trajectory studies and the
model calculations were both performed with 4.25 as the
maximum impact parameter.

■ DISCUSSION
Insights from the Model. The most important finding of

this study is that energy transfer in highly excited molecules is
dominated by rotational energy transfer rather than by
vibrational energy transfer. Even for a rigid molecule, by
using conservation of angular momentum and energy, one can
employ classical physics to determine the turning points and to
predict from them the moments of the joint probability
distribution with an R2 ≈ 0.9, provided that Ji is not too small.
For small Ji, the solution to the rotational energy transfer needs
to be augmented by a simple model to predict the change in
energy at the turning point as the molecule vibrates. Some
statistics from a few model results emphasize these points. Let
Rup ≡ ⟨ΔErot,up⟩/⟨ΔEvib,up⟩ and Rdown ≡ ⟨ΔErot,down⟩/
⟨ΔEvib,down⟩. Table 9 shows some results. In all cases except
for one, the Rup and Rdown values are larger than unity,
indicating that the amount of rotational energy transferred is
larger than the amount of vibrational energy transferred, usually
significantly so. The sole exception to this rule occurs in
helium−methane where the target molecule is nearly spherical
and colliding with a light atom, conditions such that rotational
change due to motion normal to the potential is much less
effective because the normal passes very close to the COM and
because the small value of μ reduces the orbital angular
momentum.
A second important finding is that there are two sources of

rotational energy exchange, one due to motion normal to the
potential energy surface and one due to motion tangential to
the surface and perpendicular to the LOC. The first of these is

Table 4. Averaged Energy Transfer Parameters for Argon−Ethane Collisiona

Ji Ttrans, K ⟨ΔEup⟩ ⟨ΔEdown⟩ ⟨ΔE⟩ ΔErms
9.38 300 (77/51) (−23/−36) (39/6) (119/70)
18.74 300 (94/77) (−56/−79) (31/−10) (156/117)
37.47 300 (161/105) (−215/−177) (−34/−62) (256/204)
18.74 1200 (204/147) (−68/−101) (105/24) (274/206)
26.50 1200 (213/171) (−111/−149) (79/12) (293/253)
37.47 1200 (221/202) (−155/−212) (30/−15) (320/317)

Ji Ttrans, K ⟨ΔJup⟩ ⟨ΔJdown⟩ ⟨ΔJ⟩ ΔJrms
9.37 300 (2/3) (−2/−2) (2/1) (4/4)
18.74 300 (4/3) (−1/−3) (1/0) (4/4)
37.47 300 (1/2) (−5/−4) (−1/−1) (4/5)
18.74 1200 (6/5) (−1/−3) (2/1) (6/6)
26.50 1200 (3/3) (−5/−5) (1/0) (5/6)
37.47 1200 (2/3) (−6/−6) (0/−1) (5/7)

a Energies are in cm−1 and entries in parentheses give (model results/trajectory results10).

Figure 7. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with pyrazine with Ji = 45.3 and for a translational temperature of 300
K. The contours in the bottom two panels represent a log 10 scale of
probability and are separated by 1.0 log units. The trajectory data
contours are above those for the model results; the ordinate is ΔE/
cm−1, and the abscissa is Jf/ℏ. The top panels give the trajectory results
(red dots) and the model predictions (blue solid curve) for, on the
top, the energy distribution summed over Jf and, below it, the
rotational distribution summed over ΔE.
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expected from the work of McCaffery et al.46−48 who use a hard
potential and calculate the rotational exchange from the motion
normal to the hard surface. The second is less commonly
realized and occurs only when there is a softer potential.
Grazing collisions can cause rotational excitation from the
tangential motion because the atom interacts with the tail of the
potential, pushing or pulling on a long lever arm given by the
distance from the COM to the TP along the LOC. The
tangential excitation contributes mostly to small ΔJ. The

downward opening parabolas corresponding the rhs of eq 8 are
relatively flat, partly because the impact parameter, equal to the
distance to the TP, is large. Nonetheless, the tangential
excitation can be an important component of the total. For
example, for argon−allyl with Ji = 0 and Erel = 700 cm−1,
treating the tangential energy transfer as elastic rather than
allowing it to induce rotational transfer reduces the value of
⟨ΔEup⟩ from 111 to 88 cm−1 and reduces the value of ΔErms
from 216 to 186 cm−1.

Table 5. Averaged Energy Transfer Parameters for Argon−Pyrazine Collisionsa

Ji Ttrans, K ⟨ΔEup⟩ ⟨ΔEdown⟩ ⟨ΔE⟩ ΔErms
22.6 300 (91/96) (−33/−79) (42/13) (144/143)
45.3 300 (101/106) (−62/−123) (22/−24) (163/167)
82.7 300 (114/156) (−154/−332) (−43/−193) (245/390)
Ji Ttrans, K ⟨ΔJup⟩ ⟨ΔJdown⟩ ⟨ΔJ⟩ ΔJrms

22.6 300 (11/12) (−1/−6) (4/4) (11/14)
45.3 300 (4/7) (−6/−9) (1/−2) (9/12)
82.7 300 (7/8) (−4/−15) (−2/9) (10/18)

aEnergies are in cm−1and entries in parentheses give (model results/trajectory results10).

Figure 8. Joint probability distribution, P(Jf,ΔE), for collisions of Ar
with trans-HOCO with Ji = 0 and Erel = 350 cm−1. The contours in the
bottom two panels represent a log 10 scale of probability and are
separated by 1.0 log units. The trajectory data contours are above
those for the model results; the ordinate is ΔE/cm−1, and the abscissa
is Jf/ℏ. The top panels give the trajectory results (red dots) and the
model predictions (blue solid curve) for, on the top, the energy
distribution summed over Jf and, below it, the rotational distribution
summed over ΔE.

Table 6. Averaged Energy Transfer Parameters for Argon−
trans-HOCO Collisionsa

Ji
Etrans,
cm−1 ⟨ΔEup⟩ ⟨ΔEdown⟩ ⟨ΔE⟩ ΔErms

0 350 (41/65) (−11/−29) (27/60) (72/103)
Ji Etrans, cm

−1 ⟨ΔJup⟩ ⟨ΔJdown⟩ ⟨ΔJ⟩ ΔJrms
0 350 (5/9) (0/0) (5/9) (8/12)

aEnergies are in cm−1 and entries in parentheses give (model results/
trajectory results33).

Figure 9. Model prediction for the joint probability distribution,
P(Jf,ΔE), for collisions of Ar with methane for a translational and
rotational temperature of 1150 K. The contours in the bottom two
panel represent a log 10 scale of probability and are separated by 1.0
log units. The ordinate is ΔE/cm−1, and the abscissa is Jf/ℏ. The top
panels give the model predictions for, on the top, the energy
distribution summed over Jf, and, below it, the rotational distribution
summed over ΔE.
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A third important finding is that rotational energy transfer is
significant even for collisions where the potential at the TP is
negative (attractive). For example, in argon colliding with trans-
HOCO with Ji = 0 and Erel = 350 cm−1, for 9376 positive
potentials at the TP (out of 24 998), ⟨ΔJ⟩ = 16.3 and ⟨ΔErot⟩ =
129 cm−1, whereas for 15 622 negative potentials at the TP,
⟨ΔJ⟩ = 4.4 and ⟨ΔErot⟩ = 18.2 cm−1. Given that there are
almost twice as many TPs with negative potentials as positive
ones, the negative ones account for about half of the ⟨ΔJ⟩ and
about one-quarter of the ⟨ΔErot⟩.
A fourth important finding, corroborating our previous

finding,4 is that energy transfer depends on the intermolecular
potential very strongly, but only weakly on the intramolecular
potential. The only features affected by the intramolecular
potential are the calculation of how the energy at a TP varies
with vibration and how the density of vibrational states varies
with energy.

The model also allows one to interpret and predict the
topology of the joint probability distribution. We start by
considering the solution to the rotational energy transfer
without vibration. Figure 11a shows the prediction of the joint
probability distribution for Ji = 20 with Ttrans = 300 K for helium
colliding with methane. Because methane is a spherical rotor,
there is a single rotational constant. The strong curved line is
simply the map of rotational energy change as a function of Jf.
The distribution of probability on this curve is determined by
the solutions to eqs 7 and 8. A slightly different situation occurs
when the target molecule is not a spherical rotor. For example,
Figure 11b shows the rotation-only solution for argon−allyl
with Ji = 184 and Erel = 3500 cm−1. Because there is a range of
rotational constants for different choices of the initial rotation
direction with respect to the molecular framework, there is also
a range of curvatures for the mapping of rotational energy as a
function of Jf. All of the curves coincide at the elastic point
where ΔE = 0 and Jf = Ji, and the maximum probability is at this
point. The distribution of probability elsewhere is determined
again by the solutions to eqs 7 and 8. We now add V ↔ T
energy exchange to the picture, using the change of energy at
each turning point to broaden ΔE. The result, shown in Figure
11c, is to broaden the result of Figure 11b in the vertical
direction. The inclusion of V ↔ R energy transfer further
broadens slightly the joint probability distribution in the
horizontal direction, as shown in Figure 11d.
One can now easily interpret some of the stranger joint

probability distributions, such as, for example, that shown in the
bottom contour of Figure 9. For this system, argon collides
with methane with Ttrans = Trot = 1150 K. Thus, Ji is chosen
from a distribution corresponding to this temperature, and the
joint probability distribution for rotation-only will be composed
of several curves such as that in Figure 11a, each slightly
displaced from the other and all having their maximum
probability at the elastic point, where ΔE = 0 and Jf = Ji.
Inclusion of V ↔ T transfer will broaden each of these curves
along the ΔE axis, resulting in the contour shown in the bottom
panel of Figure 9.

Highly Efficient Collisions. The model also provides
insights into “highly efficient collisions” (HECs), sometimes
called “supercollisions”. Highly efficient collisions have been
observed and discussed in previous work20,21,23,49−52 and are
defined as collisions with an energy transfer that is at least 5
times ⟨ΔEdown⟩.

50 Both the model and the trajectory results
show some probability for HECs. Our findings are that the
HECs are a natural extension of the “normal” rotational and
vibrational energy transfer that is responsible for less efficient
collisions. No new mechanism is required to explain them. On
the contrary, one can examine these collisions in detail and
learn which parts of the normal distribution of input parameters
is most responsible for them.
If we restrict ourselves to those systems and conditions for

which there is trajectory data for the JPD that indicates a
nonzero probability for HECs, then the average characteristics
of these systems, taken from the model studies, can help
provide insight as to the cause of this interesting energy
transfer. Table 10 shows some of the characteristics. The
columns labeled Pmodel(HEC) and Ptraj(HEC) give the
probabilities for HECs as calculated from the model and
trajectory JPDs, respectively. The column Rdown(HEC) gives
⟨ΔErot,down⟩/⟨ΔEvib,down⟩ considering only the HECs. The
column Rleverarm gives the HEC/(all collision) ratio of average
impact parameters for rotational excitation from motion normal

Table 7. Averaged Energy Transfer Parameters for Argon−
Methane Collisionsa

Trot, K Ttrans, K ⟨ΔEup⟩ ⟨ΔEdown⟩ ⟨ΔE⟩ ΔErms
300 300 (108/

N/A)
(−44/−150) (45/

N/A)
(193/150)

1150 1150 (269/
N/A)

(−159/−300) (64/
N/A)

(440/390)

2000 2000 (327/
N/A)

(−218/−490) (85/
N/A)

(539/600)

Trot, K Ttrans, K ⟨ΔJup⟩ ⟨ΔJdown⟩ ⟨ΔJ⟩ ΔJrms
300 300 (8/N/A) (0/N/A) (8/N/A) (9/N/A)
1150 1150 (15/N/A) (0/N/A) (15/N/A) (16/N/A)
2000 2000 (18/N/A) (0/N/A) (18/N/A) (19/N/A)

aEnergies are in cm−1 and entries in parentheses give (model results/
trajectory results29).

Figure 10. Model prediction for the joint probability distribution,
P(Jf,ΔE), for collisions of He with methane for Ji = 20 and a
translational temperature of 1150 K. The contours in the bottom two
panel represent a log 10 scale of probability and are separated by 1.0
log units. The ordinate is ΔE/cm−1, and the abscissa is Jf/ℏ. The top
panels give the model predictions for, on the top, the energy
distribution summed over Jf and, below it, the rotational distribution
summed over ΔE.
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to the potential. The final column gives the ratio of the average
potential at the turning point for the HECs to that for all
collisions. First, we note that HECs seem to be a natural
occurrence in many of the systems studied, especially in cases
when Ji is relatively high so that substantial rotational energy
may be lost. Second, they are associated with larger than
average lever arms (impact parameters) for excitation along the
normal to the potential and with larger than average potentials
at the TP. The two observations taken together mean both that
the velocity normal to the potential is larger than average and
the impact parameter is larger, giving larger rotational
excitation. In addition, because the amount of vibrational
energy available to the collision depends on how strongly the
potential changes with vibration, this amount will normally be
larger when the potential is higher. Furthermore, the
probability for such vibrational energy transfer, given in eq 11
is relatively large because the collision energy is high.
Consequently, both ΔErot and ΔEvib are large for such
conditions. Still, in most cases, the rotational excitation is
stronger, as can be seen by the observation that Rdown(HECs) is
generally larger than unity. In terms of the solid curves in

Figure 2a, the high values of the potential and the impact
parameter mean that the solid blue parabola has strong
curvature, such that it intersects the solid red rotational energy
curve very near Jf = 0. The picture that this provides for HECs
is that they are due to “sweet spots” in the orientation/impact
parameter space where the distance between the COM and the
surface normal through the TP is large and where the potential
at the turning point is high.

Limitations of the Model and Suggestions for Future
Studies. As successful as the model appears to be, it should be
noted that it is limited. First, it is almost entirely based on
classical mechanics. The rotational problem is treated
classically; rotational energies are taken as J2B with J allowed
to be nonintegral. The available vibrational energy is also
treated classically, although the probability of transfer is treated
by the adiabaticity principle, a concept that can be derived from
quantum first-order perturbation theory. If quantum effects are
expected to be important, this theory will begin to fail.
However, it seems likely that for systems such as those
described above, where there are many energy states populated
and where the excitation energy is several electronvolts,
quantum effects can likely be neglected in most cases.
There are two principal weak aspects of the model. The first

is that it is difficult and somewhat arbitrary to determine TPs
for trajectories along impact parameters that do not sample the
repulsive part of the potential. The method chosen sets the TP
as the point at which the distance between the straight-line
trajectory and the zero of potential energy is shortest. A better
method that might be explored is actually to integrate the
trajectory of the incoming atom using just the intermolecular
potential and then to choose the distance of closest approach.

Table 8. Averaged Energy Transfer Parameters for Argon−Methane Collisionsa

Ji Ttrans, K ⟨ΔEup⟩ ⟨ΔEdown⟩ ⟨ΔE⟩ ΔErms

0 300 (162/N/A) (−228/−75) (−5/31) (316/126)
10 300 (134/N/A) (−181/−188) (−32/−54) (317/198)
20 300 (154/N/A) (−378/−282) (−164/−109) (553/285)
0 600 (161/N/A) (−208/−77) (−1/167) (354/287)
10 600 (234/N/A) (−185/−203) (27/−5) (391/245)
20 600 (279/N/A) (−346/−337) (−70/−91) (573/303)
0 1150 (567/N/A) (−252/−94) (171/290) (708/465)
10 1150 (410/N/A) (−204/−294) (131/90) (664/399)
20 1150 (439/N/A) (−375/−628) (−23/−164) (740/653)
30 1150 (433/N/A) (−596/−654) (−191/−264) (972/726)
0 2000 (493/N/A) (−277/−138) (158/451) (856/641)
20 2000 (763/N/A) (−418/−740) (149/26) (1097/856)
40 2000 (749/N/A) (−834/−1101) (−171/−343) (1423/1443)

Ji Ttrans, K ⟨ΔJup⟩ ⟨ΔJdown⟩ ⟨ΔJ⟩ ΔJrms
0 300 (1/N/A) (0/N/A) (1/N/A) (2/N/A)
10 300 (1/N/A) (−1/N/A) (0/N/A) (1/N/A)
20 300 (1/N/A) (−1/N/A) (0/N/A) (2/N/A)
0 600 (1/N/A) (0/N/A) (1/N/A) (3/N/A)
10 600 (1/N/A) (−1/N/A) (0/N/A) (2/N/A)
20 600 (1/N/A) (−2/N/A) (0/N/A) (2/N/A)
0 1150 (5/N/A) (0/N/A) (2/N/A) (5/N/A)
10 1150 (1/N/A) (−1/N/A) (1/N/A) (2/N/A)
20 1150 (1/N/A) (−2/N/A) (0/N/A) (2/N/A)
30 1150 (1/N/A) (−3/N/A) (0/N/A) (3/N/A)
0 2000 (3/N/A) (0/N/A) (3/N/A) (5/N/A)
20 2000 (2/N/A) (−2/N/A) (1/N/A) (3/N/A)
40 2000 (1/N/A) (−2/N/A) (0/N/A) (3/N/A)

aEnergies are in cm−1 and entries in parentheses give (model results/trajectory results29).

Table 9. Rup and Rdown for Selected Systems

system Ji/Trot Etrans/Ttrans Rup Rdown

Ar−allyl 136 3500 cm−1 3.1 1.9
Ar−ethane 37.5 1200 K 4.6 5.2
Ar−pyrazine 82.7 300 K 2.1 2.2
Ar−trans-HOCO 0 700 cm−1 3.6 N/A
Ar−methane 2000 K 2000 K 3.3 2.8
He−methane 40 2000 K 0.8 0.9
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This approach should give the maximum agreement with the
trajectories. However, this approach would increase the time of
the calculation and might not be successful, because it would
still not take into account any rearrangement of the molecule as
the atom gets close.
The second aspect of the model that could be improved is

the force field used to calculate the change in vibrational energy
at the turning point. The current model uses only stretching
motions in the target molecule. Use of data from the
trajectories on how the molecule vibrates improves the
agreement between the model predictions and the trajectory
calculations, so it appears that the model would benefit from a
more complete force field. On the contrary, because most of
the accuracy of the model is achieved by a calculation
considering rotation alone, it seems unlikely that even an
exact force field would significantly improve the calculation,
except perhaps for downward energy transfers when Ji = 0.
An extension of the model might be made to consider energy

transfer between a target molecule and another molecule, as
opposed to an atom such as helium or argon. We are currently
investigating energy transfer from highly excited methane
colliding with water, and it is possible that the model can
provide some insight, if not accurate calculation, of the energy
transfer properties for this system.

■ SUMMARY AND CONCLUSIONS

A model for energy transfer in the collision of a highly excited
target molecule with an atom has been developed and tested by
comparing its predictions with the results of trajectory
calculations. The model predicts selected moments of the
joint probability distribution, P(Jf,ΔE), with an R2 ≈ 0.90.
Energy transfer is dominated by rotational change, and
vibrational change is smaller by comparison. The rotational
change can be predicted from classical mechanics and solution
to the conservation laws of angular momentum and energy.
There are two main mechanisms for rotational energy transfer,
one involving motion normal to the potential energy contours
and one involving motion tangential to the potential energy
contours and perpendicular to the line of centers. The model
allows insights concerning both the general topology of the
joint probability distribution and the presence of highly efficient
collisions. The latter are seen to be normal consequences of the
energy transfer model. They are due mostly to rotational
energy transfer and involve collision at “sweet spots” in the
space of impact parameter and molecular orientation.

Figure 11. Topology of the joint probability distribution (JPD),
P(Jf,ΔE). The contours represent a log 10 scale of probability and are
separated by 1.0 log units. The ordinate is ΔE/cm−1, and the abscissa
is Jf/ℏ. Panel a is the JPD for helium−methane collisions with Ji = 20
and Ttrans = 300 K considering only rotational energy transfer. The
next three panels are for argon−allyl collisions with Ji = 136 and Erel =
3500 cm−1 and with rotation only (b), with rotation and V ↔ T
energy transfer (c), and with rotation and V ↔ R, T energy transfer
(d).

Table 10. Characteristics of Highly Efficient Collisions

system Ji Etrans/Ttrans Pmodel(HEC) Ptraj(HEC) Rdown(HECs) Rlever arm
⟨ ⟩

⟨ ⟩
V

V
(HEC)TP

TP
Ar−allyl 136 3500 cm−1 0.018 0.012 1.26 1.27 4.16
Ar−allyl 184 3500 cm−1 0.023 0.011 5.81 1.32 2.61
Ar−allyl 216 3500 cm−1 0.006 0.003 16.1 1.36 2.35
Ar−ethane 37.47 300 K 0.014 0.003 65.3 1.73 2.13
Ar−ethane 18.74 300 K 0.013 0.006 9.60 1.55 3.35
Ar−ethane 9.37 300 K 0.006 0.011 0.09 1.23 10.21
Ar−ethane 37.47 1200 K 0.021 0.004 11.2 1.30 1.98
Ar−ethane 26.50 1200 K 0.013 0.009 6.18 1.325 2.20
Ar−ethane 18.74 1200 K 0.011 0.013 0.71 1.21 4.82
Ar−pyrazine 45.27 300 K 0.009 0.003 0.44 1.71 −14.3a

Ar−pyrazine 22.64 300 K 0.014 0.011 −0.06 1.70 −13.4a

aThe average potential for all collisions is negative for these conditions.
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