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ABSTRACT: The excitation/de-excitation step in the Lindemann
mechanism is investigated in detail using model development and
classical trajectory studies based on a realistic potential energy surface.
The model, based on a soft-sphere/line-of-centers approach and
using elements of Landau−Teller theory and phase space theory,
correctly predicts most aspects of the joint probability distribution
P(ΔE,ΔJ) for the collisional excitation and de-excitation process in
the argon−allyl system. The classical trajectories both confirm the
validity of the model and provide insight into the energy transfer. The
potential employed was based on a previously available ab initio
intramolecular potential for the allyl fit to 97418 allyl electronic
energies and an intermolecular potential fit to 286 Ar−allyl energies.
Intramolecular energies were calculated at the CCSD(T)/AVTZ level
of theory, while intermolecular energies were calculated at the MP2/AVTZ level of theory. Trajectories were calculated for each
of four starting allyl isomers and for an initial rotational level of Ji = 0 as well as for Ji taken from a microcanonical distribution.
Despite a dissimilarity in Ar−allyl potentials for fixed Ar−allyl geometries, energy transfer properties starting from four different
isomers were found to be remarkably alike. A contributing factor appears to be that the orientation-averaged potentials are almost
identical. The model we have developed suggests that most hydrocarbons should have similar energy transfer properties, scaled
by differences in the potential offset of the atom−hydrogen interaction. Available data corroborate this suggestion.

I. INTRODUCTION
The Lindemann mechanism, now nearly a century old,1,2 is
essential to understanding many processes of fundamental
importance because it describes the chemical transformation in
which a molecule isomerizes or dissociates to products. It has
two seemingly simple steps:

+ ⇌ + * −k kA B A B , ( / )1 1 (R1)

* → kB products, ( )uni (R2)

where A is typically an atom or small molecule, B is the target
molecule, and B* is the target molecule with vibrational and/or
rotational excitation. The study of unimolecular dissociation has
followed two important routes since the initial surge of interest
in this process during the 1920s.1,2 In the first route of
investigation, studies of isolated molecules using excitation
techniques that provide a known energy, often exciting the
molecule to a selected electronic/vibrational/rotational state,
have provided a wealth of information concerning how the
product distribution in (R2) depends on the total energy.
Experimental and theoretical advances in the 1980s have made
it possible also to detect the final state distribution, the angular
distribution of products with respect to the polarization of the
dissociating light, and the angular momentum alignment of the

products.3−5 On the other hand, most dissociations occur
under conditions where the excited molecule typically suffers
one or more collisions before dissociation, gaining or losing
internal energy and angular momentum during the process.
Thus, the second route for investigation of molecular collisions
has been to characterize the collisional energy transfer in (R1).
Since the rate of dissociation through any open channel
increases with internal vibrational energy, collisional effects can
either increase or decrease the dissociation yields, depending on
whether the collision results in vibrational excitation or
relaxation, respectively. The competition between these
processes is usually described by a master equation analysis.6

This paper studies the process (R1) in detail, using model
development and classical trajectory studies to gain insight into
both how and why a molecule is excited or de-excited in a
collision. Many results of the argon−allyl classical trajectory
studies starting with Ji = 0 have been discussed in a previous
paper.7 The previous paper in this journal presents further
allyl−argon results for Ji ≠ 0 and also investigates how
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properties of the excitation/de-excitation affect the product
distribution in (R2).8

Experimental techniques have shed much light on the
process of collisional energy transfer in highly excited
molecules.9−31 Among these techniques are chemical activation
reaction systems,9 time-resolved spontaneous infrared fluo-
rescence,10−12 time-resolved ultraviolet absorbance,13−15 kineti-
cally controlled selective ionization (KCSI),27 high-resolution
transient IR absorption spectroscopy,28,29 mass spectroscopy,30

and time-sliced ion imaging.31 Trajectory calculations based on
realistic potential energy surfaces have also enhanced our
understanding of both the unimolecular dissociation of isolated
molecules and the collisional energy transfer that occurs in
competition with dissociation.32−41

Theoretical models and simple expressions that describe the
energy transfer process are an essential ingredient of a master
equation analysis. Thus, much effort has been devoted to
developing functions for that use. The functions usually
describe the target molecule at the microcanonical level (E,J)
but describe the collision by a temperature. The field has been
reviewed several times, notably by Troe42,43 in 1977, by Gilbert
in 1991,44 by Barker and colleagues in 2001,45 by Barker and
Golden in 2003,6 and Barker and Weston, Jr. in 2012.35

Gilbert44 considers several phenomenological models for the
probability of energy transfer P(E,E′), where E′ is the initial
total energy and E is the final total internal energy. These
include (i) an exponential down model, (ii) a biased random
walk model, (iii) a strong collision model, and (iv) an impulsive
ergodic collision theory. Several of these have features that
agree with experimental data, where available, in predicting the
“average down energy”, the energy lost averaged over all the
collisions for which the total energy decreases. Troe42,43 has
proposed a double exponential model or a double biexponential
form, one for the collisions that increase energy and one for the
collisions that decrease energy. The two are related by detailed
balance. Barker and Golden and Barker and colleagues,
respectively, mention several semiempirical methods for
categorizing data.6,45 Barker and Weston, Jr.35 note that several
groups have attempted to simplify the two-dimensional joint
probability distribution, P(ΔJ,ΔE) to a one-dimensional
version, including Marcus46 and Smith and Gilbert.47,48

However, a central point of their article is that such
simplification is not yet possible using the methods proposed
so far. They propose an empirical formula for the joint
probability distribution that includes the sum of two
exponential functions and has ten parameters. The biexponen-
tial form has been proposed by others as well.19,36,37,49,50 A
principle aim of this previous work has been to develop
expressions that can be used in master equation analysis.
Developing physical models for the energy transfer is a

somewhat different aim. Earlier work includes the approach by
Nordholm and colleagues,51−58 who apply ergodic collision
theory to the energy transfer problem, and by Barker,59 who
applies SSH theory. Both have had some success in predicting
P(E,E′) probabilities and moments. Of particular note is the
application of partially ergodic collision theory (PECT) to
azulene and biphenylene.60 The ergodic collision theory
(ECT)51 assumes that the collision is “strong”, that is, that
the activation and deactivation leaves the reactant molecule in a
completely relaxed state. The probability of being found in any
particular state is described by the canonical ensemble at the
temperature of the medium. The partially ergodic collision
theory56,57 used for azulene and biphenylene accounts for the

fact that collisions are not always so strong as assumed in the
ECT model. It introduces a collisional efficiency parameter βE
and assumes complete equilibrium for only a subset of the
degrees of freedom, called the “active degrees.” With these
adjustments, the fit to the data is excellent.60

The work to be reported below also develops a physical
model for the energy transfer. Whereas the previous models
have been either statistically based or based solely on SSH
theory, our theory is a simple soft-sphere/line-of-centers model
consisting of a Landau−Teller type treatment of the vibrational
energy transfer and a phase-space treatment of the rotational
energy transfer. It appears to fit the major features of the joint
probability distribution obtained from trajectory calculations we
have performed on the allyl radical.8 These calculations were
performed at the microcanonical level for both the target
molecule and the collision. An initial simplification is to treat
the target molecule as a sphere, since in that approximation the
vibrational and rotational energy transfer are separable in a line-
of-centers treatment. We will see, however, that this is not as
severe a limitation as might be thought. Methods for extending
the model are considered in Conclusions.
The remainder of the article is organized as follows. In Model

for Collisional Energy Transfer in Highly Excited Molecules, we
develop the model for collisional energy transfer, and in
Potential Surfaces and Trajectory Methods, we outline the
methodology of the trajectory calculations. Results provides a
summary of comparisons between the model predictions and
the trajectory calculations, with substantial reference to the
Supporting Information. Discussion goes over the assumptions
of the model and compares its predictions to the results of
several previous trajectory studies. The Summary provides
Conclusions and areas for further research.

II. MODEL FOR COLLISIONAL ENERGY TRANSFER IN
HIGHLY EXCITED MOLECULES

A. Development of the Model. We start by enumerating
assumptions of the model: (a) The essential features can be
described by an orientation-averaged interaction potential
V(R). (b) The rotational energy for a state J can be
characterized by BsphJ(J + 1), where Bsph is a spherically
averaged rotational constant calculated from the spherical
moment of inertia, I = (2/3)∑ miri

2, where ri is the distance of
the mass mi from the center of mass. This assumption is
equivalent to spreading the mass of each atom evenly over the
surface of a sphere at the atom’s distance from the center-of-
mass and then calculating the moment of inertia. We will use
Bsph to mean the actual spherically averaged rotational constant,
while the term Brot will denote the rotational constant that is
used in a given context. The ratio will be Bratio = Brot/Bsph. (c)
Vibrational energy can be transferred to/from the target
molecule during the collision in any amount consistent with
conservation of energy [i.e., the vibrational frequency
distribution of the molecule (its density of vibrational states)
is smooth as a function of frequency]. We assume that the
density of vibrational states increases with energy as ρ(E) =
E(s−1)+(1/2), as used elsewhere35 and discussed by Holbrook,
Pilling, and Robertson.61 Here, s is 3N-6 (3N-5), where N is the
number of atoms in the target molecule. (d) Energy transfer
does not occur if the energy evaluated along the line of centers
is negative. (e) Rotational energy transfer is governed by a
simple phase-space model and is caused by a change in the
orbital angular momentum of the collision system as evaluated
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using the velocity along a line perpendicular to the line of
centers.
At the microcanonical level, we develop a semiclassical

theory for vibrational energy transfer based on the adiabaticity
principle. The essential equation for the exchange of vibrational
energy is Pf→i ∼ exp(−τc/τv), where Pf→i is the probability for
going from state i to state f, τv is the vibrational period, and τc is
the collision time. The model is based on first-order
perturbation theory as outlined in standard textbooks (e.g.,
section 8.6.2 of ref 62). It is part of the development of the
Landau−Teller theory63,64 and is derived from the basic
physical idea that for energy transfer to have high probability,
there must be a Fourier component of the force at the
frequency of vibration.
In the original Landau−Teller approach, the change of

energy was given by ΔEvib = hν; there was only one vibrational
frequency. Using assumption (c), we generalize to let ΔEvib be a
continuous variable; that is, the target molecule is assumed to
be so excited that its frequency spectrum is continuous with an
amplitude at any frequency or energy given by the density of
states, ρ(Ei). Since 1/τv is the vibrational frequency, the change
vibrational energy in wavenumbers is 1/τν = cΔEvib, where c is
the speed of light. Thus,

ρ
ρ

τ∼
+ Δ

−|Δ |←P
E E

E
E c

( )
( )

exp[ ]f i
i

i

vib
vib c

(1)

where the absolute value is introduced (as in eqs 4.2, 4.10, and
4.13 of ref 64) because the probability is expected to decrease
whether ΔEvib is positive or negative. Multiplication by the ratio
of the density of states between the “receiving” vibrational level,
Ei + ΔEvib, and the initial excitation level, Ei, is included since
the rate is expected to depend linearly on the density of
receiving vibrational levels. It remains to determine the collision
time, τc.
The collision time can be taken as a distance of atomic

dimensions, dforce, divided by the component of the relative
velocity along the line of centers. The line-of-centers approach
is similar to that used for standard derivations of simple
collision theory [e.g., section 3.3.1 of ref 62], except that
instead of a hard sphere, we have a collision with a softer
potential V(R). We then decompose the incoming velocity, vrel,
into two orthogonal components: vloc along the line of centers
between the incoming atom and the center of mass of the target
at the turning point, and vperploc along a direction perpendicular
to the line of centers. These motions correspond to energies
Eloc = (1/2)μvloc

2 and Eperploc = (1/2)μvperploc
2 , where Eloc +

Eperploc = Erel, and μ is the reduced mass of the collision pair.
The potential V(R) typically has both a repulsive region
extending to R0, where V(R0) = 0 and an attractive region
extending from R0 to infinity. For collision of an atom with the
target molecule characterized by a velocity corresponding to Erel
= (1/2)μvrel

2 , the location of the turning point, TP, is given by
the solution to the equation

= − =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟V R E

b
E[ (TP)] 1

TPrel
rep
2

2 loc
(2)

Here, brep is the impact parameter with respect to a potential
offset, roffset, defining the outer shell of the target molecule
[V(roffset) = Erel] rather than centered on the center-of-mass of
the target molecule, as shown in Figure 1. This formulation is
consistent with the assumptions of the Landau−Teller model,

where, for a collision A + B − C, the (exponential) potential is
between B and A.62

The TP value when brep = 0 is 0, and it then increases with
brep, eventually reaching the point TP = brep when brep = R0 −
roffset. Beyond this distance, brep > TP, the energy along the line
of centers is negative, and the relative velocity along the line of
centers is thus imaginary. With negative energy along the line of
centers, we assume that energy transfer cannot occur
(assumption d). An important consequence of this assumption
is that the potential in the attractive region does not matter for
energy transfer; we need to know the potential V(R) only
between roffset and R0. In this region, τc = τc(brep,Erel) = dforce/
{(2Erel/μ)[1 − (brep

2 /TP2)]}1/2 = dforce/vloc(brep, Erel). This
completes the calculation of how the probability for vibrational
energy transfer depends on impact parameter, relative transla-
tional energy, initial excitation Ei, and ΔEvib. When the potential
V(R) is an exponential decreasing with R/srange, the distance
dforce is equal to srange.

62 For other potentials, it seems likely that
dforce should be given by dforce = −V(roffset)/[dV(R)/dR]R→roffset.
The result for vibrational energy transfer is

ρ
ρ

=
+ Δ

× −|Δ |
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P b E
E E

E

E c
d

v b E

( , )
( )

( )

exp
( , )

i

i
vib rep rel

vib

vib
force

loc rep rel (3)

where the dependence on Erel and brep is explicitly noted.
Rotational transfer has been considered in detail by many

others (e.g., refs 65−70). While most of these models are more
complex than is warranted by the current theory, several
conclusions are worth noting. Rotational transfer can be
thought of as the product of a probability for the energy
transfer ΔErot and a probability for the angular momentum
transfer |ΔJ| = |Jf − Ji|. McCaffery and colleagues argue that the

Figure 1. The solid circle is the spherically averaged potential surface
for the target molecule. The impact parameter with respect to the
center of the target molecule is b, whereas the impact parameter with
respect to the center of the repulsive potential at the surface of the
sphere is brep. The radius of the target molecule is roffset, given as the
distance at which the potential energy is equal to Erel, the relative
translational energy. The turning point in the trajectory, TP, is the
value of brep at which the potential energy is equal to the energy
evaluated along the line of centers. R(TP) is the distance of the
turning point from the center of the target molecule, and TP is the
distance between roffset to the turning point. The turning point is the
location where V[R(TP)] = Eloc.
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former probability should be close to unity.69 The latter
probability is shown to fall exponentially as |ΔJ| increases. Thus,
any prediction of the model should be in accord with these
ideas.
We develop a rotational energy transfer model from the line-

of-centers approach used above. If the energy along the line of
centers is given by the rhs of (2), the remaining energy is due
to velocity perpendicular to the line of centers,

μ=v E b(2 / )( /TP )perploc rel rep
2 2

(4)

The energy associated with this velocity is Eperploc = (1/
2)μvperploc

2 . When the target molecule is spherical, as assumed
here, the velocity along the line of centers can excite vibrational
motion but not rotation, whereas the velocity perpendicular to
the line of centers can excite rotational motion but not
vibration. Note from Figure 1 that vperploc has an impact
parameter R(TP) = roffset + TP(brep) with respect to the center
of mass of the molecule and an impact parameter TP relative to
the offset position, where V(roffset) = Erel.
The potential experienced by motion perpendicular to the

line of centers is shown in Figure 2, where the red line indicates

the energy perpendicular to the line of centers. The peak of the
potential occurs at the turning point, and the value at the peak
is given by V[R(TP)], which from eq 2 is equal to Eloc. When
Eperploc < Eloc, as in the bottom panel, then all of it can be used
for rotational excitation. When Eperploc > Eloc, then the difference
in energy, Eperploc − Eloc remains in translational energy, while
Eloc is available for rotational excitation. Whichever amount of
rotational energy is available, the maximum change in angular
momentum is due to the reversal of the velocity associated with
that rotational energy, since for energies less than or equal to
that of the peak potential, the velocity decreases during the
collision and then reverses itself. Consequently, the maximum
angular momentum available for rotational excitation is ΔJmax =
2μvL[roffset + TP(brep)], where (1/2)μvL

2 = the smaller of
{Eperploc, Eloc}. For conservation of angular momentum |Jf − Ji|
⩽ ΔJmax.
We now use a phase space model to evaluate the probability

for a transition from Ji to Jf.
71,72 A given ΔJmax can give rise to a

number of final rotational states. It seems reasonable that the
probability of giving rise to a particular Jf should be
proportional to the number of ways to form that Jf divided
by the number of ways to form any final rotational level. The
states are best enumerated as their projections onto the axis of
the initial orbital angular momentum. The initial state, Ji, has
projections mJi from −Ji to Ji. The magnitude of the orbital
angular momentum change is equal to the change in the
magnitude of the rotational angular momentum ΔJ. This
transforms the projections mJi to the range of either (−Ji + Δ J)
to (Ji + ΔJ) or (−Ji − ΔJ) to (Ji − ΔJ). The final rotational state
must have projections that fall in these ranges. In the former
case, Jf must be at least as big as Ji +ΔJ, while in the latter it
must be at least as big as Ji − ΔJ. On the other hand, Jf cannot
be larger than these values because, if it were, conservation of
angular momentum would be violated for alignments where Ji
and Jf have their maximum projection onto the axis of initial
angular momentum. Thus, Jf = Ji ± ΔJ. Note that when ΔJ > Ji,
it is possible for the final rotation to be in a direction opposite
to the original rotation. In this case, the formula for Jf = Ji ± ΔJ
would give a negative value, even though Jf is allowed. Thus, for
the magnitudes, Jf = |Ji ± ΔJ|. Because we will be most
interested in the limits of Jf given particular values of ΔJmax and
Ji, we will be most interested in the situation where both Ji and
Jf have their maximum possible projections onto the angular
momentum axis. In this case, the projection is equal to the
magnitude.
The range of possible ΔJ can be understood using Figure 3,

which plots ΔJ as a function of brep. The values of ΔJmax as a

function of brep are shown by the blue curve, in this example for
Erel = 3500 cm−1 (10.0 kcal/mol) and for the GM isomer. The
red horizontal line is at the lowest value of ΔJ = |Jf − Ji|, for
which angular momentum can be conserved; that is, given Ji
and ΔJmax where the red line intersects the blue curve, a value of
the final rotational level lower than Jf cannot conserve angular
momentum. The blue line at ΔJ = ΔJmax is the maximum ΔJ
available from the collision; it depends on brep.
When ΔJ is equal to Ji − Jf at the red line, conservation of

angular momentum is just possible. At higher ΔJ, Jf is just one
of many final states that could be formed. In this view, all of
ΔJmax could be used for rotational excitation, but it would
produce other final states in addition to Jf. Let the possible final
states be called Jx. For each value of ΔJ between the red line at
Ji − Jf and the blue line at ΔJmax, there are two possible final J
values given by the formula discussed above: Jx = |J ± ΔJ| .

Figure 2. Eperploc/Erel (red line) and barrier as a function of arbitrary
distance. Only the amount of Eperploc that falls below the peak of the
barrier V[R(TP)] = Eloc can be used for rotational excitation. When
Eperploc > V[R(TP)] = Eloc, the energy Eperploc − V[R(TP)] remains in
translation.

Figure 3. ΔJ in units of ℏ as a function of brep. The blue curve gives
ΔJmax as a function of brep for Erel = 3500 cm−1 (10.0 kcal mol). Ji =
200, Jf = 137 and for the GM isomer. The red horizontal line is at the
lowest value of ΔJ = |Jf − Ji| = Ji − Jf, where angular momentum is
conserved. In this particular example, |Jf − Ji| = Ji − Jf = 63.

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp506202g | J. Phys. Chem. A 2014, 118, 7758−77757761



What this means physically is that, when Jx = Ji + ΔJ, the initial
rotation of the sphere is in the same direction as the initial
orbital angular momentum; the collision increases the rotation.
When Jx = Ji − ΔJ, the initial rotation of the sphere is in the
opposite direction from the initial orbital angular momentum;
the collision decreases rotation. Note that if ΔJ > Ji, the
decrease will produce a final state that is rotating in the
opposite direction from the initial rotation; in this case, the
collision has not only decreased Ji but has also reversed its
direction. The absolute value in Jx = |J ± ΔJ| corrects the
magnitude to always be ≥0.
We now determine the range of final states Jx consistent with

angular momentum conservation. If ΔJmax < Ji then the lowest

possible Jxmin is Ji − ΔJmax and the maximum possible final state
is Jxmax = Ji + ΔJmax. If ΔJmax ≥ Ji then the lowest possible Jxmin is
0 but the final states can range up to Jxmax = Ji + ΔJmax for
situations where Ji is decreased but not reversed and from 0 to
ΔJmax − Ji for situations where Ji is reversed. Both ranges must
be included since they arise from distinct values of ΔJ.
Having now determined which Jx final states would be

available for a particular ΔJmax, we simply need to add them up
weighted by their overall degeneracy. Because we have assumed
a spherical rotor, the overall degeneracy of a state with Jx is (2Jx
+ 1)2. Thus, the probability for the Jf state is the ratio between
the (2Jf + 1)2 degeneracy of Jf and the sum over Jx of the (2Jx +
1)2 degeneracies for each Jx:

δ δ δ
Δ =

+

∑ + + ∑ + + ∑ += −Δ
+Δ

=
+Δ

=
Δ −P J J J

J

J J J
( , , )

(2 1)

(2 1) (2 1) (2 1)i f
f

Jx J J
J J

x Jx
J J

x Jx
J J

x
rot

2

1
2

2 0
2

2 0
2

i

i i i

max

max max max
(5)

where δ1 = 1 if Ji ≥ ΔJmax and 0 otherwise, and δ2 = 1 if Ji <
ΔJmax and 0 otherwise. It should be noted that ΔJmax depends
not only on brep but on Erel, μ and on the potential through the
turning points. The summations can easily be evaluated using

∑ + = + −

× + + +

+ +

=
J J J

J J J

J J J

(2 1)
1
3

(1 )

(3 8 4 4

4 4 )

Jx J

J

x x x

x x x

x x x

2
max min

max max
2

min

max min min
2

x

x

min

max

(6)

Further illustration of the rotational theory is provided in
Appendix SI of the Supporting Information, where it is shown
that this simple model gives rise to a probability for rotational
excitation and de-excitation that is very similar to one that falls
off nearly exponentially with |ΔJ|, at least in ranges of |ΔJ| that
are not further limited by conservation laws. Figure SI-5 of the
Appendix of the Supporting Information shows an example.
The overall probability will be Pvib times Prot times a function

ΔEAM whose value is unity if the collision conserves energy and
angular momentum and zero otherwise. Conservation of
angular momentum is implicit in the development of Prot:
|Jf − Ji| ⩽ ΔJmax. Conservation of energy is somewhat more
complicated. We assume that all of Eloc can, in principle, be
converted to vibrational energy, with the probabilities
determined by (3) and (5). However, not all of Eperploc can
be converted to rotational energy. From Figure 2 we note that
when Eperploc > Eloc, the difference in energy Efinal = Eperploc −
Eloc must be included in the final translational motion.
Conservation of energy requires that when Eperploc > Eloc, ΔE
⩽ Erel − Efinal or ΔE ⩽ Erel − Eperploc + Eloc, where ΔE = ΔEvib +
ΔErot is the total change in internal energy. Figure SI-2a of the
Supporting Information illustrates this point. Since Eperploc and
Eloc depend on impact parameter, the conservation of energy
equation must be evaluated at each impact parameter.
The final equation for the joint probability distribution of

having ΔE = ΔEvib + ΔErot and ΔJ = Jf − Ji is then given by

μΔ

= Δ

JPD J J b E d B

b P b P b

[ , , E, , , , , ]

( ) ( ) ( )

i f rep rel force rot

EAM rep vib rep rot rep (7)

This equation must be integrated over brep to obtain the total
cross section,

∫σ μ π= ΔE JPD J J b E d B b b( ) [ , , E, , , , , ]2 d
b

i frel
0

rep rel force rot rep rep
rep,max

(8)

To obtain the joint probability distribution as a function of
temperature, σ(Erel) should be divided by the hard sphere cross
section πbrep,max

2 and integrated over Erel using the energy
distribution function G(Erel), given, for example, in eq 1.37 of
ref 62. Alternatively, the rate constant k(T) may be obtained by
multiplying σ(Erel) by vrel and integrating the result over Erel.
Several comments are worth noting. Given a potential, V(R),

and the reduced mass, μ, the joint probability distribution has
no other adjustable parameters. The offset, roffset, is determined
from the potential as the distance at which V(roffset) = Erel and
Bsph is simply determined from the spherical moment of inertia,
I = (2/3)∑ miri

2, where ri is the distance of the mass mi from
the center of mass. Furthermore, the intermolecular potential
V(R) appears only through determination of roffset and through
the variation in turning point with brep. Finally, the only region
of the potential that is important is in the distance range from
roffset to R0. Further comments on the model and its
assumptions will be deferred until Discussion of the
Assumptions.

B. Simplifications and Scaling Properties of the
Model. While the evaluation of the above model is exact, it
is obvious that the model is an oversimplification of the real
physics of molecular energy transfer. We discuss the
assumptions in more detail in Discussion of the Assumptions,
but it is worth noting here that the model can both be
simplified and cast in a somewhat more general way that
maintains the proper scaling of probability with input
parameters (Bsph, Eint, μ) but allows for adjustments to account
for more realistic collisions.
We start with the following generalizations. We assume that

even when the potential is of the form exp[−R/srange ], the
value of dforce in (3) may not be exactly equal to srange. Rather,
we let dforce = avibsrange, where avib is a dimensionless coefficient
whose value would be unity if the model were exact. A second
generalization is to assume that ΔJmax = 2 μvL[roffset + TP(brep)]
is also scaled by a dimensionless parameter, where we redefine
ΔJmax as ΔJmax = 2 μvL[roffset + TP(brep)]/arot. Again, arot would
be equal to unity if the original model were exact. Finally, there
are good reasons why the actual rotational constant should be
somewhat smaller than Bsph, as discussed in Discussion of the
Assumptions. Thus, we define Bratio as Brot = BratioBsph, where
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Brot is the actual rotational constant, Bsph is the spherically
averaged rotational constant, and Bratio is a dimensionless
parameter that would be equal to unity if the model were exact.
These three adjustable parameters, avib, arot, and Bratio, can be
used to account for inaccuracies in the model when applied to
real systems. The formulas, however, maintain the proper
scaling with relation to Eint, μ, etc.
We now simplify the model by estimating the results of the

integration over impact parameter, brep. In practice, this
simplification greatly speeds the calculation, which often
includes further averaging over relative collision energy and
the initial rotational state. The following are the steps in
simplification.
We simplify the collision by assuming that the energies along

and perpendicular to the line of centers are constant values
instead of values that depend on impact parameter. We set both
equal to Eav = Erel/2. The velocities along these directions are
thus also equal and given by vav = (2Eav/μ)

1/2. We further
assume that the potential can be written in the form V(R) =
(Erel + ϵ) exp[−(R − roffset)/srange ] − ϵ, at least in the region
between the R where V(R) = Erel and the R where V(R) = 0.
The vibrational energy transfer is then simply

ρ ρ= + Δ

× − |Δ |

P E E

a E s v

[ ( E )/ ( )]

exp[ (1.4) / ]
ivib2 i vib

vib vib range av (9)

where avib = dforce/srange is a dimensionless adjustable parameter
that would be unity for close agreement with the original
model, and the factor of 1.4 is an empirically derived correction
for the fact that the average of (1/v) is larger than the reciprocal
of the average of v.
The rotational energy transfer would normally depend on the

area under Prot(brep) from brep,min to brep,max, where Prot = (2Jf +
1)2/sum, and sum is the denominator of eq 5; it depends on
ΔJmax(brep). Instead, we take ΔJmax(brep) to be constant with brep
and equal to ΔJmaxav = μvavoffsetav/arot, where offsetav replaces
[roffset + TP(brep)] and is obtained from offsetav = roffset + R′,
where R′ is the solution to V(R′) = Eav. With these
approximations, the rotational energy transfer probability is
given simply by

= + + Δ

× + + + Δ + Δ

P J J

J J J J

(2 1) /(1/3(1 2 )

(3 12 12 4 4 )

f

i i

rot2
2

maxav

2
maxav maxav

2

(10)

The integration over brep is evaluated by using conservation
of angular momentum to determine the limits of the
integration. These limits are from b1 to b2, where b1 and b2
are the two impact parameters where |ΔJ| intersects the blue
curve (see Figure 3). We replace the blue curve by a triangle
whose apex is at (1/6)(R0 − roffset). Defining Rrot = |ΔJ|/ΔJmaxav,
it can be shown that b1 = Rrot(1/6)(R0 − roffset) and b2 = (R0 −
roffset)[1 − (5/6)Rrot]. For an integrand Prot2 that is constant
with brep, the integral is simply Prot2(b2

2 − b1
2)/(R0 − roffset)

2 or
Prot2 [1 − (5/3)Rrot + (2/3)Rrot

2 ].
Conservation of energy is still governed by a delta function,

but it takes a somewhat different form when no longer
dependent on brep:
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(11)

where zero probability has been replaced by 10−8 so as to
prevent problems in taking the log for plotting purposes. The
first and second pairs of lines in (11) ensure conservation of
angular momentum and energy, respectively. The last pair of
lines is a replacement for the condition ΔE ⩽ Erel − Efinal,
discussed above. The falloff in probability with increasing ΔEvib
or increasing |Jf − Ji| is steeper as avib or arot increase,
respectively.
The final probability is obtained by multiplying the three

functions of (9), (10), and (11) by the result for the integration
over brep:

= Δ − +P P R RJPD [1 (5/3) (2/3) ]2 2 vib2 rot2 rot rot
2

(12)

The joint probability distribution given in (12) is unnormal-
ized; normalization on a grid of {Jf,ΔE} can be performed to
either set the maximum probability to unity or to set the sum of
all probabilities to unity. Alternatively, the probability of (12)
may be divided by {(2Ji + 1)2/(1/3)(1 + 2ΔJmaxav)(3 + 12 Ji

2 +
4ΔJmaxav + 4ΔJmaxav2)} so that the probability for {Evib = 0, ΔJ =
0} is unity. Figures S2−S8 of the Supporting Information show
that the approximate value of (12) is in good agreement with
the numerical solution (8) for argon collisions with GM allyl
over a range of Ji from at least 0 to 280 and over Erel from at
least 100 cm−1 (0.29 kcal/mol) to 7000 cm−1 (20.0 kcal/mol).
An advantage of (12) over (8) is that it is much faster for

calculations. On a single laptop processor using 46 bins in
energy and 16 bins for the final rotational level, (8) takes about
20−30 min for the rather complex intermolecular potential we
use for argon interacting with allyl. On the other hand, the use
of (12) takes only 20 s for accuracy that is nearly comparable
(see Figures S2−S8 of the Supporting Information). When
additional integration over relative energy is needed to simulate
a temperature, and/or if integration over initial Ji is needed,
then the calculation time grows substantially so that the speed-
up factor of roughly 60 is helpful.
Equations 8 and 12 do not obey detailed balance, but if

desired, it is easy to impose it. For a microcanonical system,
detailed balance implies the gikif = gfkf i, where gi(gf) is the
degeneracy of the initial (final) state, kif is the rate constant
from the initial state to the final state, and kfi is the rate
constant for the reverse process. Given the same relative
velocity and hard sphere cross section for the forward and
reverse rates, detailed balance may also be written in terms of
probabilities: giPif = gfPf i. The vibrational part of the energy
transfer does obey detailed balance. For the vibrations, the
degeneracy factors are proportional to the density of states, and
the forward and reverse rate constants are related by a change
in the sign of ΔEvib in (3). Inspection quickly shows that Pif/Pfi
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= ρ(Ei + ΔEvib)/ρ(Ei − ΔEvib) = gf/gi, as required. The
rotational part of the energy transfer does not obey detailed
balance, as can be seen from (10) and (12). For the forward
process, giPif = (2Ji + 1)2PJi → Jf = (2Jf + 1)2/denom(Ji), whereas

for the reverse process gfPf i = (2Jf+1)
2PJf → Ji = (2Ji + 1)2/

denom(Jf), where denom(Jk) is defined as the denominator of
(10) with Ji replaced by Jk. The ratio of gfPif/(giPif) is thus not
equal to unity, as required by detailed balance, but instead equal
to denom(Jf)/denom(Ji). The reason for this is that phase space
theory itself is not designed to satisfy detailed balance. Detailed
balance can be imposed on the theory by replacing Ji in the
denominator of (10) by the average of Ji and Jf. We note that
the factor in (12) that accounts for the integration over impact
parameter is invariant to exchange of Ji and Jf, and since the
vibrational part of the problem obeys detailed balance, the final
equations will obey detailed balance if it is imposed on the
denominator of (10). For practical purposes, it is not really
necessary to do so because the ratio gfPif/(giPif) is never far
from unity. Numerical tests on GM allyl show that even when
the spread between Ji and Jf is ±150, the ratio changes only
between 0.64 and 2.07. Because the energy transfer varies by
many orders of magnitude over this range, plots such as those
to be shown below are virtually unchanged by imposing
detailed balance.
In summary, formulas (9)−(12) allow an efficient calculation

of the joint probability distribution. When the dimensionless
values avib, arot, and Bratio are all equal to unity, the result is very
close to the prediction of the original model.

III. POTENTIAL SURFACES AND TRAJECTORY
METHODS

A. Description of the Potential Energy Function. The
Ar−allyl potential is expressed as the sum of an intramolecular
allyl potential and an interaction potential between the argon
and the allyl. The intramolecular potential is based on a
mathematical fit to 97418 electronic energies calculated at the
CCSD(T)/aug-cc-pVTZ level, as described previously.73,74

There are four stable isomers of C3H5, the conformations
denoted GM (CH2−CH−CH2), LM1 (CH3−C−CH2), and
LM2 (CH3−CH−CH) and a triangular conformation LM3.
Dissociation channels include H elimination to yield allene or
propyne and methyl elimination to yield acetylene, either
through a vinylidene intermediate from LM1 or directly from
LM2.
The intermolecular Ar−allyl potential was approximated by a

sum of pairwise potentials between the argon atom and each H
or C atom of the allyl. This potential has also been described
previously.7 Briefly, each Ar−H or Ar−C potential is described
as the sum of an exponential repulsion and an attractive
potential, using functions described by Varandas and
Rodrigues.75 Parameters used in these functions are given by
the IntPES2 column in Table 2 of ref 7, and contour plots of
the potentials for argon interacting with the stable isomers are
shown in Figure S1 of the Supporting Information. The
parameters were found by fitting the potential equations to 286
points calculated at the MP2 level of theory with an aug-cc-pvtz
(avtz) basis set using counterpoise correction.77 The fit had an
R2 of 0.962 and an overall RMS error of 216 cm−1 (0.617 kcal/
mol). For the attractive regions, the RMS error was 22 cm−1

(0.063 kcal/mol), while for energies around 1200 cm−1 (3.42
kcal/mol) the RMS error was 150 cm−1 (0.43 kcal/mol) and

for energies around 8000 cm−1 (22.9 kcal/mol), it was about
650 cm−1 (1.9 kcal/mol).

B. Description of the Trajectory Methods. Classical
trajectory calculations were performed as described previ-
ously7,8 with the following modifications. The excitation energy
above the allyl zero point energy was chosen to be 54974 cm−1

or 157.2 kcal/mol. This energy was chosen because it was used
for both experiments76 and trajectory calculations73 on allyl
alone and because it is high enough to access all of the observed
dissociation channels. The collision energy was chosen to be 10
kcal/mol, which corresponds approximately to a temperature of
3332 K. Some previous trajectories at a collision energy of 2
kcal/mol (about 666 K) will also be described. In addition,
trajectories were performed both with rotationless and rotating
initial allyl radicals. In the latter case, the initial vibrational and
rotational energies were determined microcanonically by
assigning random velocities to each atom and scaling the
total energy to be 54974 cm−1 (157.2 kcal/mol) above the
zero-point energy of the GM isomer. The energies above the
LM1, LM2, and LM3 isomers are, respectively, 47822, 46199,
and 44663 cm−1; these correspond to 136.7, 132.0, and 127.7
kcal/mol, respectively.
Trajectories were started with the allyl in one of the four

stable isomers (GM, LM1, LM2, and LM3), and the initial
orientation of the allyl with respect to the argon was varied by
random rotation of the Euler angles. A small set of trajectories
was run to determine the maximum impact parameter, bmax,
using the time of the collision as a guide, as described
previously.7 This method eliminates much of the elastic spike
near ΔJ = 0 and ΔE = 0, although a small residual remains. The
impact parameter for the main set of trajectories was then
selected from values between 0 and bmax using a properly
weighted Monte Carlo method.
The general strategy for computing the trajectories rests on

the observation that the collision time (about 1 ps)7 is
considerably shorter than the time for reaction (typically 10−
100 ps). Trajectories for the argon-ally collision were run until
the argon atom and the allyl were separated by a distance of 15
au. The number of trajectories run was 29878 for the GM
isomer, 26151 for the LM1 isomer, 21139 for the LM2 isomer,
and 23717 for the LM3 isomer. Products of the collisional
trajectories were characterized by an initial rotational level, Ji, a
final rotational level, Jf, and change in total energy, ΔE. Further
details are provided elsewhere.8

The classical trajectories are, of course, only an approx-
imation to the quantum mechanical physics that governs the
collisions. However, because the excitation energy and the
collision energy are large, it is likely that the classical trajectories
are a very good approximation for characterizing the angular
momentum and energy transfer for this system.

IV. RESULTS
A. Collisional Energy Transfer for Argon with Allyl

Isomers. The overall collisional energy transfer from a
molecule starting in a state with energy and angular momentum
(Ei,Ji) to a state with energy and angular momentum (Ef,Jf) can
be described by the joint probability distribution, P(Ji,Jf,ΔE),
where ΔE = Ef − Ei. As described above, trajectories were run
for C3H5 starting in each of the GM, LM1, LM2, and LM3
isomers with a total excitation energy above the GM zero point
energy of 54974 cm−1 and encountering collisions with argon at
a collision energy of 10 kcal/mol (3500 cm−1). The results were
tabulated according to P(Ji,Jf,ΔE), and the results were binned
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typically with widths of ΔJi = ΔJf = 25ℏ and ΔE = 350 cm−1

(1.0 kcal/mol).
Figure 4 displays some typical results from the trajectories.

The upper of the two contour plots shows the logarithm (base
10) of the joint probability distribution from the trajectories.
The red dots in the top panel show the energy distribution
from the trajectories summed over Jf, while the red dots in the
next lower panel show the rotational distribution from the
trajectories summed over ΔE. In each case, the blue curve is the
prediction of the model with arot = 1, avib = 1, and Bratio = 0.8.
The contour predicted by the model is in the lowest panel.
Several similar figures (Figures S9−S18) are included in the
Supporting Information for GM with Ji = 187.5 and 237.5, for
LM1, with Ji = 137.5, 187.5, and 237.5, for LM2 with Ji = 137.5,
187.5, and 237.5, and for LM3 with Ji = 137.5 and 187.5. It is
clear from these results that the model captures, though not
exactly, the principal variations in the joint probability
distribution for collisions of argon with various isomers of
allyl. In all cases, the model predictions are fairly good with arot
= 1, avib = 1, and Bratio = 0.8. The reason for choosing a value of
Bratio somewhat smaller than unity will be discussed in
Discussion of the Assumptions.
A striking result of the trajectory calculations is that the

energy transfer does not depend strongly on the identity of the
starting isomer. The red dots in Figure 5 display in the top
panel the joint probability distribution summed over Jf and, in
the bottom panel, the join probability distribution summed
over ΔE. Similarly, the blue, orange, and purple dots provide
data for trajectories starting in LM1, LM2, and LM3,
respectively. Gaussian binning has been used to smooth the
trajectory data. It is evident that the energy transfer properties
for the different isomers are similar. Equivalent results are
found for Ji = 87.5, 187.5, 237.5, and 287.5, as shown in Figures
S19−S22 of the Supporting Information.
It is perhaps surprising at first to find that there is so little

effect of the starting isomer on the energy transfer properties.
The argon interaction potentials, plotted in Figure S1 of the
Supporting Information, show significant differences in the
shape and magnitude of the potential energy as a function of
isomer. Thus, the similarity in energy transfer outcomes is not
due to a similarity in interaction potential. Nor is the similarity
in energy transfer outcomes the result of collisional mixing of
the isomers. The trajectory data show that, except for starting
from LM3, over 96% of the configurations just following the
collision were either the same as or closely related to the
configuration before the collision.8 For trajectories starting
from LM3, breaking 1 C−C bond would give GM, so this also
has a configuration following the collision that is “closely
related” to the configuration before the collision. Thus, it is
certainly not the case that there is complete scrambling
between the configurations as a result of the collision. The
reason for the similarity in energy transfer outcomes for the
different isomers is because the orientationally averaged
potentials are very similar, as discussed in Discussion of the
Assumptions below.
A somewhat different comparison between the trajectories

and the model can be made with allyl−argon collisions in which
the allyl is initially in Ji = 0. For these trajectories, the collision
energy was 2.0 kcal/mol. Figure 6 displays results in a fashion
similar to that for Figure 4. It is surprising that even though the
molecule is not rotating, and therefore not subject to rotational
averaging, the model still predicts results that are in reasonable
agreement with the trajectories.

V. DISCUSSION
A. Model for Collisional Energy Transfer in Highly

Excited Molecules. 1. Discussion of the Assumptions. We

Figure 4. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with allyl starting in the GM configuration with Ji = 137.5 and for a
collision energy of 10.0 kcal/mol. The contours in the bottom two
panels represent a log10 scale of probability and are separated by 1.0
log units. The trajectory data contours are above those for the model
results; the ordinate is ΔE/cm−1, while the abscissa is Jf. The top
panels give the trajectory results (red dots) and the model predictions
(blue solid curve) for the energy distribution summed over Jf (top)
and the rotational distribution summed over ΔE (bottom). The model
parameters are arot = 1, avib = 1, and Bratio = 0.8. Energies are in inverse
centimeters, where 350 cm−1 = 1.00 kcal/mol.
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now examine the assumptions (a−e) made in developing the
model of Model for Collisional Energy Transfer in Highly
Excited Molecules. Of course, in the end analysis, whether the
assumptions are reasonable will be determined by whether the
model predicts the data from the trajectories, but it is important
first to assess the limitations of and rationale for the
assumptions.
(a) Essential features of the energy transfer are assumed to

be described by an orientation-averaged potential V(R). One
surprising feature of the results is that the joint probability
distributions for energy transfer are very similar for trajectories
starting in GM, LM1, LM2, and LM3 (see Figure 5). The
potential energy contours for the isomers, shown in Figure S1
of the Supporting Information, appear to be quite different
from one another. However, as shown in Figure 7, the
orientation-averaged potential energy curves are nearly
identical. These orientation-averaged potentials were deter-
mined by taking the intermolecular potential function (typically
a sum of pairwise interactions) and averaging it over Euler
angles for each distance R from the center of mass. The fact
that the energy transfer outcomes seem to correlate with the
orientation-averaged potential energy curves suggests that the
energy transfer depends only on this averaged potential energy
and not on the more detailed shape of the potential. Of course,
this conclusion may be specific to Ar−allyl or to situations
where the orientationally averaged curves present the same
atomic species to the incoming projectile. Further examples will
be needed to test this assumption.
Table 1 shows numerically how similar the potential curves

in Figure 7 are to one another. Each potential over the range of
energy transfer interest can be represented to very high
accuracy by a formula of the type

= + ϵ − − − ϵV R E R r s( ) ( ) exp[ ( )/ ]rel offset range (13)

Figure 5. The joint probability distribution P(Jf, ΔE) for collisions of
Ar and for Ji = 137.5 summed over Jf (top). The joint probability
distribution P(Jf,ΔE) for collisions of Ar and for Ji = 137.5 summed
over ΔE (bottom). The starting isomers are GM (red), LM1 (blue),
LM2 (orange), and LM3 (purple). In all cases, Gaussian binning has
been used so as to be able to discern the differences between the
isomers from the scatter. Energies are in inverse centimeters, where
350 cm−1 = 1.00 kcal/mol.

Figure 6. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with allyl starting in the GM configuration with Ji = 0 and for a
collision energy of 2.0 kcal/mol. The contours in the bottom two
panels represent a log10 scale of probability and are separated by 1.0
units. The trajectory data contours are above those for the model
result; the ordinate is ΔE/cm−1, while the abscissa is Jf. The top panels
give the trajectory results (red dots) and the model predictions (blue
solid curve) for the energy distribution summed over Jf (top panel)
and the rotational distribution summed over ΔE (next panel). The
model parameters are arot = 1, avib = 2, and Bratio = 0.8. Energies are in
inverse centimeters, where 350 cm−1 = 1.00 kcal/mol.
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where Erel is the energy of the turning point for b = 0, ϵ is an
attractive well depth, roffset is an offset defined as the solution
toV(roffset) = Erel, and srange is an exponential range parameter.
Note that while this potential goes to −ϵ at large R, the only
part of the potential that is used for the model is the potential
between the position where V(R) = Erel and the position where
V(R) = 0. It is clear when the potential is expressed this way
that all of the argon−allyl potentials are characterized by similar
offset and range parameters, as shown in columns 3 and 4 of
Table 1. The range parameter srange and the offset roffset are the
only parameters that appear directly in the model. The
vibrational energy transfer is exponentially sensitive to srange,
while the rotational energy transfer depends strongly on roffset.

Orientation-averaged potentials for argon with ethane, pyrazine,
methane, and cis- and trans-HOCO will be discussed in Model
Predictions for Other Systems.
At first it may seem strange that a model based on only the

orientation averaged potential can predict anything quantitative
concerning the energy transfer. However, nearly all trajectory
calculations and experiments are carried out with random
orientations of the target molecule relative to the direction of
the incoming atom. Thus, even in the case where the target
molecule is not rotating, the experiment or trajectory performs
orientation averaging. The assumption that the essential
features of the energy transfer are described by an
orientation-averaged potential V(R) amounts to an assumption
that the energy transfer changes fairly smoothly with
orientation (i.e., that there are no “sweet spots” where energy
transfer is highly efficient). Mathematically, this amounts to the
assumption that the average of the energy transfer as a function
of orientation is nearly equal to the energy transfer as a function
of the average orientation. Of course, this assumption also
means that, to the extent that they depend on special features of
the potential, the model will fail to predict any “highly efficient
energy transfer” encounters, such as those that have been found
for argon−allyl collisions,8 for collisions of CS2 with small
molecules,78 and other systems.
(b) Rotational energy for a state J is assumed to be

characterized by Bsph J(J + 1), where Bsph is the spherically
averaged rotational constant for the molecule. The justification
for taking the spherically averaged rotational constant follows
directly from treating the target molecule as a spherical object.
This spherical approximation allows the separation of vibra-
tional and rotational energy transfer in the soft-sphere/line-of-
centers model. In order for the rotational transfer to be
consistent with this model, the rotational constant needs to be
that for a spherical target molecule. However, some corrections
may be necessary.
Because the spherically averaged rotational constant is

calculated based on the ground-state equilibrium structure of
the molecule, it may not be appropriate for highly excited
vibrational levels, where the atoms are, on average, further from
the center of mass both because of centrifugal distortion and
because of the vibration−rotation interaction. Centrifugal
distortion reduces the term values of rotation states, as
described by the formula F(J) = J(J + 1)Be − DJ2(J + 1)2.
Here, Be is the rotational constant based on the equilibrium
configuration and D is a centrifugal distortion constant related
to the vibrational frequency by D = 4Be

3/ω2. The centrifugal
distortion reduces the effective rotational constant. However,
the effect is small. For ω = 900 cm−1, Brot = 0.4365, and J = 137,
the reduction is about 2%.
A much larger reduction comes from the fact that the average

stretch distance in a vibrationally excited molecule is larger than
in a ground-state one. The effect is described spectroscopically
by the formula B0 = Be − (1/2)Σrαr

B, where the sum is over the
3N-6 (3N-5) vibrational modes of the molecule with N equal to
the number of atoms.79 For an excited molecule in a particular
mode, the reduction is given by Bv = Be − α(v + 1/2). Table 3
of ref 79 lists experimental and calculated values of Σrαr

B for
some simple molecules. Assuming excitation of 20000−50000
cm−1 and a vibrational frequency of 2000 cm−1, we would have
values of v in the range from 10 to 25. An average value of (Σr
αr
B)/Be for several molecules listed is about 0.018, so in the

range of excitation the correction could amount to a reduction

Figure 7. Orientationally averaged potential energy curves for argon−
allyl isomers, where the distance is that to the center of mass of the
isomer. The top panel shows a wide range of distance, while the
bottom panel shows the region of interest for energy transfer. The blue
curve is for trajectories starting in GM, the red for LM1, the orange for
LM2, and the green for LM3. The red-dashed and blue-dashed curves
are the pair potential for Ar−H and Ar−C used in the fit to the
calculated intermolecular PES. Energies are in inverse centimeters,
where 350 cm−1 = 1.00 kcal/mol.

Table 1. Characteristics of Orientation-Averaged Potentials
and Spherically Averaged Rotational Constants Used in This
Studya

potential E0 roffset(Erel) srange ϵ Bsph

allyl GM 1.43 × 109 3.585 (3500) 0.280 230 0.4365
allyl LM1 1.63 × 109 3.639 (3500) 0.280 200 0.4020
allyl LM2 9.81 × 108 3.595 (3500) 0.288 220 0.4215
allyl LM3 1.23 × 109 3.584 (3500) 0.282 240 0.6080
ethane 3.98 × 108 − 0.283 100 0.9152
pyrazine 8.40 × 1015 − 0.152 200 0.1529
methane 9.67 × 107 − 0.266 170 5.33
cis-HOCO 6.11 × 108 3.66 (350) 0.260 110 0.5444
trans-HOCO 2.21 × 109 3.69 (350) 0.239 85 0.5383

aThe potential parameters are those in V(R) = (E0 + ϵ) exp[−R/srange
] − ϵ. For a fixed value of Erel, these potentials can also be expressed as
V(R) = (Erel + ϵ) exp[−(R − roffset)/srange ] − ϵ, where roffset at the
value of Erel is given in the third column. Energies in the table are in
wavenumbers (350 wavenumbers = 1 kcal/mol), while distances are in
angstroms. All potentials are for the interaction with argon.

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp506202g | J. Phys. Chem. A 2014, 118, 7758−77757767



in the rotational constant of 18−45%. Thus, it is reasonable to
assume Brot = BratioBsph, where Bratio could be smaller than unity.
Confirmation of this general conjecture comes from an

examination of the trajectory data. For example, the trajectories
for allyl in the GM isomer with an excitation energy of 54974
cm−1 (157.2 kcal/mol) show configurations that, when
averaged over 25 trajectories of roughly 2000 positional
outputs per trajectory, give a spherical rotational constant of
0.402 with a standard deviation of 0.043. When compared to
the equilibrium spherical rotational constant of 0.4365 for this
isomer, Bratio is somewhere between 0.81 and 1.03 (to one
standard deviation). Similar results are found for other
isomers,8 where excited values of Bsph and its standard deviation
are given by LM1: {0.370,0.043}; LM2: {0.393,0.047}; and
LM3: {0.477,0.086} as compared to equilibrium values of
0.401, 0.424, and 0.607, respectively.
(c) Vibrational energy can be transferred to/from the target

molecule during the collision in any amount [i.e., the
vibrational frequency distribution of the molecule (its density
of vibrational states) is smooth as a function of frequency]. If
the target molecule is treated classically then the vibrations are
not quantized and this assumption is automatically met.
However, if the target molecule is treated quantum
mechanically then at least at low excitation energies, the
frequencies are constrained to be multiples of the fundamental
frequencies. The original Landau−Teller model, based on
perturbation theory, treats the vibrations of the target molecule
(a diatomic) quantum mechanically. In extending the Landau−
Teller model to a target molecule of many atoms at very high
excitation, we make the assumption that the molecule has
vibrations at all frequencies (it is in the quasicontinuum) and
that, therefore, any amount of vibration can be transferred
between the atom and the target consistent with conservation
of energy. For very highly excited polyatomic molecules, this
seems a reasonable assumption. There will be some amplitude
of vibration at every frequency, so that energy transfer, while
perhaps depending linearly on the density of vibrational levels,
should still vary exponentially with |ΔEvib|. Of course, as the
excitation energy for a polyatomic molecule decreases, its
frequency spectrum will become more “lumpy” and at the
lowest energies, the lumps will correspond to the frequencies of
the normal modes. In such situations, it may not be possible to
exchange an arbitrary |ΔEvib|. In principle, the inclusion of the
density of states ratio in eq 1 helps to correct for the
“lumpiness”, but most models for the variation of the density of
states with energy are quite smooth.
An interesting feature of the model is that, while it depends

strongly on the intermolecular potential, the only place where
the intramolecular potential has a substantial influence is in the
variation of the density of states with energy. To the extent that
the model is predictive, this observation suggests that most
improvements can be made by treating the intermolecular
potential more realistically.
(d) Energy transfer does not occur if the energy evaluated

along the line of centers is negative. This assumption seems
intuitive but should be examined in more detail. The collision
time, τc, increases rapidly as the impact parameter goes from 0
to R0, at which point the energy along the line of centers goes
to zero. At larger b, the energy along the line of centers is
negative. At these large impact parameters, the relative velocity
between the atom and target molecule is essentially unchanged.
The atom may feel a force directed toward the target molecule
due to the attractive potential, but the attractive energy along

the line of centers is not enough to overcome the attractive
well. As a result, there is little deflection, so that Lf ≈ Li, and Jf
must then be nearly the same as Ji. Thus, there is little or no
rotational energy transfer. The vibrational energy transfer is
also small because the force against the molecule is nearly zero
and is exerted very slowly (i.e., adiabatically). Such collisions
(with b > R0) can thus contribute mostly to the elastic
scattering, where ΔEvib = 0 and Jf = Ji. The consequence of this
assumption is that the only part of the potential that matters for
energy transfer is between R = roffset and R = R0.
One assumption of a line-of-centers model can be examined

by plotting the actual turning points from the trajectories and
comparing them to the prediction of turning points for the
orientation-averaged potential. Figure 8 shows the results for

trajectories starting in the GM isomer. The green line predicted
from the orientation-averaged potential appears to give a
sensible interpolation of the trajectory points in blue. Recall
that the orientation-averaged potential is fit by a function of the
form V(R) = (Erel + ϵ) exp[−(R − roffset)] − ϵ, which is highly
accurate for the region between R = roffset and R = R0. However,
this potential remains negative at large R, and this is the reason
that the predicted turning points in green do not return to the
line R(TP) = b at large R. We note that while the green line
gives a sensible interpolation to the trajectory calculations, the
wide variation in turning points indicates that orientational
effects may play a significant role and should be addressed in
any improvement of the model.
Looking in more detail at Figure 8, we see that there are

many trajectories that penetrate well into the sphere, describing
the rotationally averaged potential for the GM isomer, which
has roffset = 3.6 Å. How serious is this problem, and will it cause
a breakdown of the model? The answer is that the assumptions
of the model depend more on the potential at the surface of the
molecule’s shape rather than on having the shape be a sphere.
The range parameter, (srange, for an exponential potential) is the
most important parameter for the vibrational transfer, while the
parameter roffset is the most important parameter for the
rotational transfer. The advantage of having approximated the
target molecule by a sphere is that the two motions are
effectively separated, with Pvib depending on Eloc and Prot
depending on Eperploc. For molecules with pockets or
protuberances, the vibrational and rotational excitation/de-
excitation become mixed, with Eloc contributing to rotation and
Eperploc contributing to vibration. However, the approximation
of spherical symmetry is still one that captures the essential
physics of the problem. As can be seen from the results for
trajectories starting in J = 0 from the GM geometry with Erel =

Figure 8. Turning points for trajectories (blue dots) and those
predicted by the orientation-averaged potential function (green line).
The red line plots R(TP) = b.

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp506202g | J. Phys. Chem. A 2014, 118, 7758−77757768



700 cm−1 (2.0 kcal/mol) in Figure 6, even when the target
molecule is not rotating at all, the model is still in reasonable
agreement with the data because the potential that the
incoming atom feels is, on average, the orientation-averaged
potential.
(e) Rotational energy transfer is governed by a simple phase-

space model and is caused by a change in the orbital angular
momentum as evaluated using the velocity along a line
perpendicular to the line of centers. The phase space
model71,72 is a well-established approach that has yielded
reasonable results and good insight. While more detailed
theories are available,65−70 the phase-space approach has the
virtue that it is easy to evaluate and has the correct behavior. As
shown in the Appendix of the Supporting Information, it
predicts soft exponential falloff for both positive and negative
ΔErot, followed by much more rapid exponential falloff on each
side when conservation of angular momentum limits the range
of impact parameters that can contribute to the energy transfer.
The comparison of the model with the trajectory results on
argon−allyl shown in Figure 4 and Figures S9−S18 of the
Supporting Information provides fairly convincing evidence
that the basic approach is correct.
Models of physical phenomena are important for at least two

reasons: they predict the outcome of experiments, and they
allow one to see how the fundamental physics, often simple,
accounts for more complex behavior. Comparison of the
prediction of the model with the outcome of trajectory
calculations on argon−allyl has been examined in Results.
Comparison to the results of other calculations will be
examined in Model Predictions for Other Systems. Before
moving to these comparisons, we briefly summarize some of
the physical insights that the model provides.
2. Insights from the Model. An observation from the

discussion of assumption (a) in Discussion of the Assumptions
is that the orientation-averaged potentials for different isomers
are very similar. This similarity may be the cause of the similar
energy transfer results. The repulsive part of the potential
between the potential values of Erel and 0 are all nearly the
same, as characterized by similar srange parameters. Furthermore,
the orientation-averaged potential is similar both to the argon−
H potential and to the argon−C potential in the pairwise sum
that describes the intermolecular potential. Support for the
importance of the argon−H potential comes from the trajectory
studies. The fraction of collisions that have their minimum
turning point closest to an H atom is 94%, 91%, 87%, and 94%
for trajectories starting in the GM, LM1, LM2, and LM3
isomers, respectively. Finally, while the energy transfer no
doubt also depends on the asymmetry of the molecule and the
density of states, the first of these is similar for the isomers and
the second is identical, at least in the commonly used formula
describing how the density of states varies with energy.35

This observation invites some speculation about other
hydrocarbon systems. In typical hydrocarbons, the hydrogen
atoms are farther from the center of mass than the carbon,
oxygen, nitrogen, etc. When the intermolecular potential
between the hydrocarbon and the atom is orientation averaged,
it will be the hydrogens that are on the outside. One might then
speculate that the orientation-averaged intermolecular potential
for all hydrocarbons will simply be a shifted pair potential
between the incoming atom and a bonded hydrogen atom; all
hydrocarbon potentials for the same incoming atom might have
similar range parameters, srange. The difference, then, between
different hydrocarbons would be in the offset shift. In this view,

the only functions of the heavier atoms are (a) to act as a
scaffold to hold the hydrogens at some distance shifted by roffset
from the center of mass and (b) to determine the reduced mass
and rotational constant. In the model for energy transfer, the
offset affects the rotational energy transfer but not the
vibrational energy transfer.
Several other insights can be obtained by examining how the

joint probability distribution varies with the parameters Erel,
ssrange, Bsph, and μ, as discussed in Appendix SII of the
Supporting Information.

B. Model Predictions for Other Systems. 1. Comparison
of Model Predictions with Argon-Ethane and Argon-
Pyrazine Data. Barker and Weston, Jr.35 used quasi-classical
trajectory calculations to study the joint probability distribu-
tions for energy transfer in Ar−pyrazine and Ar−ethane
collisions. A goal of their paper was to develop a flexible
formula to describe the joint probability distribution. The
collisional aspect of the trajectories was calculated at the
canonical level of averaging, typically with Ttrans = 300 K,
although results at other temperatures were also reported. The
target molecule was treated at the microcanonical level. The
argon−ethane and argon−pyrazine interactions were modeled
by an exponential-6 or Lennard-Jones pairwise potential, and
the intramolecular potentials were based on a classical model
chosen to match experimental vibrational frequencies. Interest-
ing data were obtained from the trajectories and interpreted
with an original and useful formula.
The major conclusion of the Barker and Weston, Jr. paper

was that the final rotational energy distribution is not
independent of the initial distribution, so that a two-
dimensional joint energy transfer description is required. The
authors proposed that the form of the joint probability
distribution should follow a particular, flexible formula, P(E,J;
E′,J′) = Σi = 1

2 Ci f Ti exp(−fai), where Ti is a temperature
characterizing the collision, Ci are adjustable amplitudes, and
the functions f i are defined in the reference and characterized
by four parameters for each value of i. The summation over two
functions allows one function to account for the elastic peak.
The simple physical model that we have developed predicts

the results of the Barker and Weston trajectories with
reasonable accuracy. Fits of their phenomenological formula
to the data are provided in Supporting Information to their
article.35 We used their intermolecular potential parameters to
derive orientation-averaged potentials, whose parameters for
argon-ethane and argon-pyrazine are listed in Table 1. Equation
12 was used with integration over Erel using a thermal
distribution at 300 K.
Figure 9 shows a result for argon with ethane. The spherically

averaged rotational constant for ethane is 0.9512 cm−1, and the
model used arot = 4, avib = 3, and Bratio =0.7. Calculations were
performed for conditions appropriate to Figures 4a/6a, 4c/6c/
and 4e/6e of the Barker and Weston Jr. paper.35 Figure 9 is for
Ji = 37.47.
Barker and Weston Jr. also reported results for the collisions

of argon with pyrazine.35 Figure 10 shows the prediction of our
model along with their results, as represented by their 10-
parameter formula. We used their potential functions to
calculate the orientation-averaged potential listed in Table 1.
The spherically averaged rotational constant is 0.1529 cm−1.
Figure 10 is for conditions relevant to Figures 3c/5c of ref 35.
Parameters used for the model prediction were arot = 2, avib = 8,
and Bratio = 0.9.
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It is clear from Figures 9 and 10 that there is very good
agreement between the prediction of (12) and the results
reported by Barker and Weston, Jr. for argon with ethane or
pyrazine.35 Two other figures for argon−ethane, with Ji =

18.735 and Ji = 9.376, and two other figures for argon−
pyrazine, with Ji = 82.659 and Ji = 22.637, are shown in Figures
S23−S26 of the Supporting Information. The agreement is

Figure 9. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with ethane starting with Ji = 37.47 and for a translational temperature
of 300 K. The contours in the bottom two panels represent a log10
scale of probability and are separated by 1.0 log units. The contours for
the trajectory data are above those for the model results; the ordinate
is ΔE/cm−1, while the abscissa is Jf. The top panels give the trajectory
results from ref 35 (red dots) and the model predictions (blue solid
curve) for the energy distribution summed over Jf (top) and the
rotational distribution summed over ΔE (bottom). The model
parameters are arot = 4, avib = 3, and Bratio = 0.7. Energies are in
inverse centimeters, where 350 cm−1 = 1.00 kcal/mol.

Figure 10. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with pyrazine starting with Ji = 42.274 and for a translational
temperature of 300 K. The contours in the bottom two panels
represent a log10 scale of probability and are separated by 1.0 log units.
The contours for the trajectory data are above those for the model
results; the ordinate is ΔE/cm−1, while the abscissa is Jf. The top
panels give the trajectory results from ref 35 (red dots) and the model
predictions (blue solid curve) for the energy distribution summed over
Jf (top) and the rotational distribution summed over ΔE (bottom).
The model parameters are arot = 2, avib = 8, and Bratio = 0.9. Energies
are in inverse centimeters, where 350 cm−1 = 1.00 kcal/mol.
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similar to that shown in Figures 9 and 10. We conclude that the
model works well for argon−ethane and argon−pyrazine. We
also note that the potential parameter srange for ethane (0.283) is
very similar to that for the allyl isomers (0.280−0.288). The
value of srange for pyrazine (0.159) is somewhat smaller than
those where the argon−H interaction is dominant.
2. Comparison of Model Predictions with Argon-HOCO

Data. We have recently reported a benchmark potential for
argon−HOCO and compared it with a pairwise potential to see
how predictions of the average energy transfer for the down
collisions might depend on potential.41 The trajectory data that
we obtained for this system included the joint probability
distribution, although this distribution was not reported in the
communication. The pairwise potential, called P-18, did not
predict an average down energy in close agreement with the
benchmark potential (the prediction was about 30% too low),
but it is nonetheless interesting to see if the results of our
model are consistent with the results from the trajectories using
the same potential. For the current purposes, we augmented
the 7000 trajectories reported41 with another 18000. We then
determined the orientation-averaged potentials for argon with
both cis-HOCO and trans-HOCO (see Table 1). The
spherically averaged rotational constants are both close to
0.54 cm−1. Figure 11 shows the results for argon with cis-
HOCO. The collision energy is 350 cm−1 (1.0 kcal/mol), and Ji
= 0. For the model, αrot = 1, αvib = 14, and Bratio = 0.8.
Similar agreement was found for argon with trans-HOCO, as

shown in Figure S27 of the Supporting Information. The
average energy change for those trajectory collisions that
produced ΔE ≤ 0 was −27.3 cm−1 based on the 25000 argon−
HOCO trajectories. For the model calculation, from the joint
probability distribution described in Figure 11, we obtained
−28.7 cm−1 (0.082 kcal/mol) for cis-HOCO and −31.2 cm−1

(0.089 kcal/mol) for trans-HOCO. Thus, provided that there is
enough data (e.g., a joint probability distribution) to determine
the adjustable parameters, it appears that the model can
accurately predict average energy changes.
3. Comparison of Model Predictions with Argon-Methane

Data. Jasper and Miller have reported the results of trajectory
calculations for excited methane in collision with several
different atoms and with methane itself.32−34 In particular, they
report as a function of temperature two highly averaged energy
change values for collisions of argon with excited methane,33

the average energy lost in collisions that have ΔE < 0, denoted
<ΔEd >, and the rms average energy transferred, <ΔE2>1/2. The
intermolecular potential they used was taken from the paper by
Alexander and Troya.80 The orientation-average of this
potential is listed in Table 1 along with the value of Bsph,
which in this case is equal to the normal rotational constant.
Calculation of the averaged quantities requires averaging the

joint probability distribution not only over impact parameter
but also over relative energy Erel and initial rotational level Ji.
Figure 12 shows the results of these calculations in red and
green along with the results of their trajectory studies in blue.
The model predicts values for both sets of parameters that are
higher than values from the trajectories, particularly at high
temperature, and the slopes with temperature are somewhat
higher than those for the trajectories as well. One might have
expected better agreement for this system, since methane is the
only molecule we have studied that actually is spherical. Further
study and comparison are certainly warranted.
4. Generalizations about Hydrocarbons. One insight from

the model is that hydrocarbons might have similar energy
transfer properties when scaled for roffset. An analysis of the
trajectories for argon with allyl isomers8 shows that at the

Figure 11. Joint probability distribution P(Jf,ΔE) for collisions of Ar
with cis-HOCO starting with Ji = 0 and for a translational energy of
350 cm−1 (1.0 kcal/mol). The contours in the bottom two panels
represent a log10 scale of probability and are separated by 1.0 units.
The contours for the trajectory data are above those for the model
results; the ordinate is ΔE/cm−1, while the abscissa is Jf. The top
panels give the trajectory results (red dots) and the model predictions
(blue solid curve) for the energy distribution summed over Jf (top)
and the rotational distribution summed over ΔE (bottom). The model
parameters were arot = 1, avib = 14, and Bratio = 0.8. Energies are in
inverse centimeters, where 350 cm−1 = 1.00 kcal/mol.
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turning point the closest atom is a hydrogen 94% of the time
for the GM isomer, 94% for LM1, 87% for LM2, and 94% for
LM3. Thus, the incoming argon atom nearly always experiences
an argon−hydrogen potential, and these should have similar
potential parameters. Examination of Table 1 shows that the
srange parameters for the hydrocarbons listed are from 0.280 to
0.288 for allyl, and from 0.152 to 0.288 among all the systems
studied. When one looks in more detail at the pairwise
potentials that go into the orientation averaged potentials, it is
clear that when there are several hydrogen atoms on the
perimeter of the molecule, srange is close to 0.28 and similar to
the pair potential for argon and a bonded hydrogen. Of course,
a molecule such as HOCO is only barely a hydrocarbon. In
HOCO, as well as in pyrazine, the offset of the pairwise
potentials of argon with O, C, or N are comparable to the offset
with H, whereas in allyl and ethane, the argon−H offset is
considerably larger than the offset for the argon−C potential.
While it remains to be further verified, it does appear that when
hydrogens are prominent in the periphery of the hydrocarbon,
the energy transfer properties can be determined approximately
from the radius of the spherically averaged hydrocarbon using a
value for srange of about 0.28. A remaining question, of course, is
why the parameter avib is near unity for allyl and between 3 and
8 for ethane. More examples for comparison will be needed, as
well as better methods for estimating avib for realistic systems.

VI. CONCLUSIONS
A soft-sphere/line-of-centers model has been developed for
collisional energy transfer in highly excited molecules. Vibra-
tional transfer is treated using an adiabaticity approach, while
rotational transfer is treated using phase-space theory. The
model, even with no adjustable parameters, correctly predicts
most features of the energy transfer observed in trajectories for
argon with allyl isomers performed using a realistic potential
energy surface. Extension of the model with three adjustable
parameters allows good fits to the results of many other
trajectory studies, including those of argon with ethane and
pyrazine35 and argon with HOCO.41 The agreement with a

trajectory study of argon with methane33 is somewhat less
satisfactory and should be investigated further.
There are several limitations to the model, many of which

have been discussed in the main part of the paper. To make
these clear, we briefly summarize the limitations here. The
model depends on the assumptions listed in Development of
the Model and discussed in Discussion of the Assumptions.
Many of these assumptions should be tested against new
trajectory or experimental results. It is clear that the reliance on
an orientation-averaged potential is a simplification, but how
the model will succeed when the degree of asymmetry is large
remains to be determined. The wide variation in turning points
in Figure 8 suggests that orientational effects might be
important. On the other hand, the agreement of the model
predictions with the trajectory results for allyl suggest that, in
this case, either they are not important or they average out.
More examples will be needed to understand this result. The
vibrational relaxation depends on the Landau−Teller formula,
which while getting the basic physics right is itself a
simplification. The rotational relaxation depends on phase-
space theory and, in the original version (with arot = 1), is based
on a “hard collision” assumption. Larger values of arot “soften”
the collision, but it is not clear how to determine the correct
value of arot. Furthermore, because the potential is assumed to
be spherically symmetric, there is no rotational excitation from
the motion along the line of centers; vibrational excitation and
rotational excitation are separate processes. In asymmetric
molecules, rotational excitation from motion along the line of
centers is clearly important. Finally, although the excitation and
collision energies in the problems considered are quite high,
both the model and the trajectories to which it is compared are
primarily classical. To the extent that quantum mechanics
differs from classical mechanics, neither the trajectories nor the
model will be correct. The model is clearly a first step toward
more realistic models. The limitations must be kept in mind,
but they also serve as a guide as to how the model might be
improved.
One improvement would be a method for estimating the

values of the three adjustable parameters for real systems. The
value of Bratio should usually be less than unity, for reasons
discussed above, but will this hold for other systems? The
values of arot and avib seem usually to be in the range from 1 to
10; values higher than unity indicate that the rotational or
vibrational energy transfer is correspondingly less efficient than
assumed in the original model. In the case of vibration, the
decrease in efficiency is likely to be a result of collisions that
provide less energy along the line of centers. In the case of
rotation, it is likely that the collision does not have its turning
point as far from the center of mass as assumed in the model.
Further, while they are separately calculated quantities in the
model system, in realistic systems, the mixing of vibrational and
rotational energy transfer is probably ubiquitous. For example,
when vibrational excitation decreases substantially, the atom
will leave with more velocity than it had to begin with. In the
realistic case, some rotation is caused by the velocity change
normal to the potential surface, so the vibrational de-excitation
will increase the probability of rotational change. Extending the
model to such situations of mixed vibrational/rotational
transfer might provide insights into parameter determination.
One approach might be to use the real intermolecular

potential rather than the orientation-averaged one, to calculate
as a function of b and orientation the values of dforce/vloc and
ΔJmax and to average these values over b and orientation. Of

Figure 12. Comparison of average energy down (top) and rms energy
transfer (bottom) between the results of trajectory calculations (blue)
by Jasper and Miller on argon with methane33 and the predictions of
the model using parameters arot = 8, avib = 10, and Bratio = 0.8 (red) or
arot = 10, avib = 15, Bratio = 0.8 (green). Energies are in inverse
centimeters, where 350 cm−1 = 1.00 kcal/mol.
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necessity, this approach, now underway, would involve
evaluating a competition between vibrational energy exchange
and angular momentum exchange, a feature that is lacking in
the current model. While this approach seems reasonable, the
fact that the excited molecules have a fluxional and essentially
unknown structure means that many details of the interaction
will still be predicted incorrectly. On the other hand, the fact
that the model is reasonably successful while depending on the
intramolecular potential only through the density of states gives
hope that this approach might work.
Other areas for future work would be improved estimation of

the density of states function, perhaps by direct count,
integration of the model predictions with the master equation
approach,6 and integration of the model with the hard ellipse
model for rotational energy transfer.70,81,82

There is great value in performing trajectory studies of
collisional energy transfer in highly excited molecules,
particularly at the microcanonical level. Such studies both
stimulate model development and allow detailed examination
of conjectures that arise in evaluating the models.
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