Carbon isotope separation by multiphoton dissociation of CF₃I ## S. Bittenson and P. L. Houston Department of Chemistry, Cornell University, Ithaca, New York 14853 (Received 7 July 1977) A selective multiphoton dissociation process has been used to enrich carbon-13 in CF₃I. A separation factor of nearly 600 has been achieved for irradiation of 0.1 torr of CF₃I at -80°C with the R(14) line of the 9.6 μ CO₂ laser transition. An investigation of the dependence of the enrichment factor on pressure indicates that collisions during the dissociation are effective in destroying the selectivity. The multiphoton dissociation is quite efficient. At laser energy fluences of 1.2 J/cm², one in every 11 absorbed photons contributes its energy to the breaking of the C-I bond. #### 1. INTRODUCTION Multiphoton dissociation of molecules using pulsed infrared lasers has been the object of extensive investigation $^{1-9}$ following the observation by Isenor and Richardson of dissociation in the intense field of a TEA $\rm CO_2$ laser. An important application of this technique is to the separation of isotopically labeled molecules, as reviewed in Refs. 11–14. Enrichment in the isotopes of H, 15,16 B, $^{17-20}$ C, 20,21 Si, 20 Cl, 21 S, $^{21-23}$ and $\rm Os^{24}$ has been reported. In this paper we report the multiphoton dissociation of CF₃I₂ We have used this dissociation to separate carbon isotopes. Multiphoton dissociation in the structurally similar molecules CCl₃F and CF₃Cl has recently been reported by Dever and Grunwald. These authors used a focused CO₂ laser to obtain up to 1.6% conversion of the parent molecule per flash at about 60 torr of pressure. No investigation of the isotopic selectivity was reported. Lyman and Rockwood²⁰ enriched carbon-13 by multiphoton dissociation of CF₂Cl₂ (Freon-12). The ¹³C/ ¹²C ratio of the starting material was increased by a factor of 1.65 by selectively dissociating ¹²CF₂Cl₂. Our use of CF3I for investigation of the multiphoton process offers several advantages. Carbon is the only element of this molecule for which more than one isotope occurs naturally. This property considerably simplifies the mass spectral analysis. In addition, CF3I can be dissociated at intensities as low as 5 MW/cm². An unfocused TEA CO2 laser gives sufficient power so that a measurable fraction of starting material may be dissociated in fewer than 100 shots at one torr in a reasonable cell volume. Finally, very high isotope separation factors may be achieved in CF₃I. In excess of 15% of the molecules in the beam can be dissociated per laser pulse at high intensities, and enrichment factors of nearly 600 have been obtained. The interaction of CO_2 laser radiation with CF_3I has been reported previously. By using a microwave-infrared double resonance scheme, Jones and Kohler²⁶ have shown that the R(16) line of the 9.6 μ CO_2 band is coincident with the R(7), K=2, F=19/2-21/2 transition of the ν_1 CF_3I band. The absorption coefficient can be inferred from their data to be on the order of 0.23 cm⁻¹torr⁻¹. By using an infrared-infrared double resonance scheme, Petersen et al.²⁷ have observed an increase in absorption at 1052 cm⁻¹ following the excitation of CF_3I at 1075 cm⁻¹ with a pulsed CO_2 laser. This observation indicates that an appreciable excited state population in CF_3I may be obtained. #### II. EXPERIMENTAL CF₃I dissociation was achieved with a grating tuned CO₂ TEA laser (Tachisto Corportion model 215 laser head) producing a maximum of 1 J single line output in 60 nsec FWHM. Roughly half of the total energy appears in a 400 nsec tail following the main pulse. A 30 cm focal length sodium chloride lens was used to focus the radiation through polished NaCl windows into cylindrical Pyrex sample cells. The dimensions of the cells were adjusted to meet requirements of individual experiments. Cell lengths ranged from 5 to 30 cm when focusing was used, and from 5 to 114 cm when the laser was used unfocused. Species identification, concentrations, and isotope ratios were determined with a Perkin Elmer model 521 grating infrared spectrometer and a Consolidated Engineering Corporation type 21-103A mass spectrometer. Laser power was measured with a Scientech model 360001 laser power meter. The pulse intensity was taken to be one-half of the measured energy per pulse in 60 nsec over the mean irradiated area of a sample. Beam areas were recorded on thermal sensing paper stock and were not corrected for laser mode structure or external diffraction effects. An intracavity aperture near the output mirror was used to restrict lasing to low order transverse modes, and an external aperture was generally used to reduce the beam area to 0.5 cm². Trifluoromethyl iodide was used as supplied by PCR Incorporated after out-gassing at 77 °K, and sample pressures were measured with an MKS Instruments capacitance manometer. #### III. RESULTS AND DISCUSSION # A. Definitions For pressures below 1.0 torr, the multiphoton process selectively dissociates ¹²CF₃I. We define below the parameters necessary to describe this selectivity. Following Lyman and Rockwood²⁰ and Benedict and Pigford, ²⁸ let β , be the ratio of reactant isotope abundances before and after irradiation: $$\beta_r = \left[n_{13} / n_{12} \right] / \left[n_{13}(0) / n_{12}(0) \right], \tag{1}$$ where n_{13} (n_{12}) is the number density of $^{13}\mathrm{CF}_3\mathrm{I}$ ($^{12}\mathrm{CF}_3\mathrm{I}$) molecules and $n_i(0)$ refers to the initial number of the i^{th} species. The laser preferentially dissociates $^{12}\mathrm{CF}_3\mathrm{I}$ so that β_i increases as the bulk dissociation proceeds. In a similar fashion, we define β_p as the isotope ratio in the products, p_{12} and p_{13} , compared to the ratio expected for a nonselective process: $$\beta_b = [p_{12}/p_{13}]/[n_{12}(0)/n_{13}(0)]. \tag{2}$$ Both β_r and β_b increase with increasing selectivity. The parameters β_p and β_r , whose values depend on the number of laser pulses, are useful macroscopic indicators of the selectivity. The microscopic information concerning the selectivity is contained in the parameter α , defined as follows. After each laser pulse, small increments dn_{12} and dn_{13} of n_{12} and n_{13} will be converted to the products p_{12} and p_{13} , respectively. The isotope ratio in this increment of products will thus be given by dn_{12}/dn_{13} . Since a completely nonselective process would give an incremental isotope ratio equal to the current value of n_{12}/n_{13} , we can measure the microscopic selectivity by the parameter $$\alpha = \left[\frac{dn_{12}}{dn_{13}} \right] / \left[\frac{n_{12}}{n_{13}} \right]. \tag{3}$$ If $^{12}\text{CF}_3\text{I}$ molecules are preferentially dissociated, then α will be larger than one. We define f to be the fraction of starting material remaining after irradiation of the sample with several pulses. $$f = [n_{12} + n_{13}]/[n_{12}(0) + n_{13}(0)] \approx n_{12}/n_{12}(0)$$, (4) where the approximate holds for $n_{12} \gg n_{13}$. Assuming that $n_{12} \gg n_{13}$ and that α is constant during the course of the photolysis, the quantities f, α , and β , are related²⁰ by the equation $$\beta_{r} = f^{(1-\alpha)/\alpha} \,. \tag{5}$$ Combination of Eqs. (2) and (3) and integration from f' = 1 to f' = f to obtain β_b yields $$\beta_p = \frac{\alpha^2}{2\alpha - 1} \left[(1 - f^{(2\alpha - 1)\alpha})/(1 - f) \right]. \tag{6}$$ In principle, α may be calculated from β_r and f_r , from β_p and f_r , or from β_p and β_r . Finally, we will need to know how f varies with N, the number of laser pulses. Let us at first assume that the fraction of $\mathrm{CF_3I}$ dissociated in the beam per pulse, Δf , is constant throughout the irradiation. For a cell of volume V_c and a homogeneously irradiated volume V_{irr} , Δf is related to f by $$f = (1 - r\Delta f)^N , \qquad (7)$$ where $r = V_{irr}/V_c$ and N is the total number of laser pulses. ## B. Kinetic scheme The CF3 and I radicals formed by multiphoton dissociation of CF3I recombine to yield CF3I, C_2F_6 , and I_2 . These are the only species observed in either infrared or mass spectra of samples irradiated at intensities below 25 $\rm MW/cm^2$. In particular, $\rm CF_2I_2$ and other products which arise from breaking a C-F bond are not observed. We propose below a kinetic scheme for the purpose of discussing our results. While this scheme is not exhaustive, it completely accounts for our observations. The dissociation is described by three processes: $$CF_3I + ph\nu \stackrel{R_8}{-} CF_3I^*$$, excitation (8) $$CF_3I^* + qh\nu \stackrel{kg}{\rightarrow} CF_3 + I$$, dissociation (9) $$^{12}CF_3I^* + ^{13}CF_3I \stackrel{k_{10}}{=} ^{12}CF_3I + ^{13}CF_3I^*$$. collisional (10) scrambling In these equations p and q are integral numbers of photons totalling enough energy to break the C-I bond (ΔH_{298}^0 = +55 kcal/mole; $p+q \gtrsim 18$ photons). Equations (8) and (9) may actually consist of several individual steps. Dissociation is followed by recombination of radicals to yield products or reactants: $$CF_3 + CF_3 - C_2F_6 , \qquad (11)$$ $$CF_3 + I - CF_3I, \qquad (12)$$ $$I + I(+M) - I_2(+M)$$ (13) Two other radical reactions are also of importance: $$CF_3 + I_2 - CF_3I + I, \qquad (14)$$ $$^{12}CF_3 + ^{13}CF_3I \rightleftharpoons ^{12}CF_3I + ^{13}CF_3$$ (15) ### C. Isotopic selectivity as a function of pressure A summary of the experimental results is given in Table I. Runs 1-12 investigate the dependence of β_p on pressure. As shown in Fig. 1, β_p increases dramatically from unity as the pressure of CF₃I is reduced below 1.0 torr. The R(14) line of the 9.6 μ CO₂ laser transition selectively dissociates 12 CF₃I. It may be noted from the table that the fraction of CF₃I remaining undissociated, FIG. 1. Selectivity of product formation as a function of pressure. Laser intensity was 5.5 MW/cm². TABLE I. Summary of experimental results.^a | Run | P
(torr) | I ^b
(MW/cm ²) | β_{r} | $eta_{m p}$ | $f^{\mathbf{c}}$ | $r^{ exttt{d}}$ | Δf | α | $E_{ m abs} \ (h u / m mol)$ | Eff.
(%) | N | |-----|-------------------|---|-------------|-------------|------------------|-----------------|------------|----------|--------------------------------|-------------|------| | 1 | 0.14 ^e | 5.5 | 1.7 | > 13 | 0.77 | 0.86 | <0.001 | >13 | | | 400 | | 2 | 0.15 | 5.5 | 1.5 | > 8 | 0.75 | 0.86 | < 0.001 | > 8 | | | 400 | | 3 | 0.32 | 5.5 | 1.0 | 4 | 0.95 | 0.86 | < 0.001 | 4 | | | 170 | | 4 | 0.50 | 5.5 | 1.0 | 2 | 0.95 | 0.86 | < 0.001 | 2 | | | 100 | | 5 | 0.60 | 5.5 | | 1.9 | | 0.86 | | 1.9 | | | 200 | | 6 | 0.67 | 5.5 | 1.0 | 1.7 | 0.94 | 0.86 | < 0.001 | 1.7 | | | 170 | | 7 | 0.83 | 5.5 | 1.0 | 1.3^3 | 0.92 | 0.86 | <0.001 | 1.3 | | | 170 | | 8 | 0.95 | 5.5 | | 1.2^{3} | | 0.86 | | 1.2 | | | 100 | | 9 | 1.00 | 5.5 | 1.0 | 1.1^{2} | 0.92 | 0.86 | 0.001 | 1.1 | | | 100 | | 10 | 1.20 | 5.5 | | 1.1^{1} | | 0.86 | | 1.1 | | | 100 | | 11 | 1.50 | 5.5 | | 1.0^{8} | | 0.86 | | 1.1 | | | 100 | | 12 | 5.00 | 5.5 | 1.0 | 1.0^{2} | 0.73 | 0.86 | 0.004 | 1.0 | | | 100 | | 13 | 0.15^{f} | 25 (max) | 180 | 5.3 | 0.02 | 0.078 | 0.05 | 9.8 | | | 1000 | | 14 | 0.10^{f} | 25 (max) | 590 | 6.4 | 0.015 | 0.078 | 0.03 | 12 | | | 2000 | | 15 | 0.10^{f} | 3.5 | 8.1 | > 25 | 0.20 | 0.414 | 0.004 | > 41 | | | 1080 | | 16 | 0.50 | 0.8 | | | 1. | 0.077 | 0 | | 2.6 | 0 | 200 | | 17 | 0.50 | 1.5 | | | 0.99 | 0.077 | 0.001 | | 4.7 | 0.3 | 200 | | 18 | 0.50 | 3.3 | | | 0.90 | 0.077 | 0.007 | | 8.1 | 1.5 | 200 | | 19 | 0.50 | 5.2 | | | 0.56 | 0.077 | 0.038 | | $11.^{2}$ | 6.1 | 200 | | 20 | 0.50 | 6.1 | | | 0.65 | 0.042 | 0.051 | | 12.3 | 7.5 | 200 | | 21 | 0.50 | 7.0 | 1.7 | 4.4 | 0.45 | 0.077 | 0.052 | 5.7 | 13. ² | 7.1 | 200 | | 22 | 0.50 | 10 | 1.6 | 4.7 | 0.63 | 0.011 | 0.084 | 5.6 | 16.6 | 9.1 | 500 | | 23 | 0.50 | 13 | 3.2 | 4.0 | 0.33 | 0.042 | 0.13 | 5.6 | | | 200 | | 24 | 0.50 | 16 | 1.9 | 3.6 | 0.59 | 0.007 | 0.15 | 4.3 | | | 500 | ^aFor dissociation with the R(14) line of the 9.6 μ CO₂ laser transition. f, is always greater than 0.73 for these runs. Expansion of Eq. (6) under the condition that f > 0.73 yields that $\beta_b = \alpha$ to within 14%. Thus, for CF₃I, α increases as the pressure, P, decreases. For dissociation of SF_6 a proportionality between $ln\beta$, and P^{-1} has been noted by Ambartzumian $et\ al.^{29}$ An increase in β , as P decreases has also been observed for dissociations of CF_2Cl_2 , BCl_3 , and $SiF_4.^{20}$ From Eq. (5) it may be shown that, at a given fractional dissociation, the fact that β , increases as P decreases implies that α increases as P decreases. Since this behavior seems to be common to a variety of multiphoton systems, one might reasonably conclude that the dependence of α on P, shown for CF_3I in Fig. 1, is related to the mechanism of multiphoton dissociation and not to the specific case at hand. This implies that Reaction (10) must be at least partly responsible for the scrambling. The differential equations corresponding to Reactions (8)–(10) may be used to predict the dependence of $ln\beta$, on P. These equations can be solved to yield the time dependence of $^{12}\mathrm{CF}_3$ and $^{13}\mathrm{CF}_3$. The amounts of each radical formed per laser pulse of duration t_0 may then be solved by integration of the equations for $^{12}\mathrm{CF}_3$ and $^{13}\mathrm{CF}_3$ from t=0 to $t=t_0$. The result gives an expression for α which simplifies to $$\alpha = \left(\frac{k_9}{k_{10}P}\right) \left(\frac{n_{12} + n_{13}}{n_{12}}\right) + 1 , \qquad (16)$$ under the assumptions that k_9 is large compared to t_0^{-1} and that no scrambling occurs after the dissociation. Consequently, the simple model presented by Reactions (8)-(10) explains why α increases as P decreases. More explicitly, substitution of Eq. (16) into Eq. (5) predicts that $\ln \beta$, should increase as P^{-1} : $$ln\beta_r = ln(1/f) \left[1 + P \frac{k_{10}n_{12}}{k_9n_{12} + n_{13}} \right]^{-1}$$ (17) Although it is not clear that the fractional dissociation, f, was constant in their experiments, an increase in $ln\beta$, with P^{-1} was observed by Ambartzumian $et\ al.^{29(a)}$ For $\mathrm{CF_3I}$ the dependence of α on pressure is somewhat stronger than the P^{-1} dependence of Eq. (16). This may be due to the fact that collisional scrambling following dissociation, Reaction (15), also depends on pressure. Dever and Grunwald⁷ have suggested in their study of CCl₃F and CF₃Cl that the energy provided by the laser stays predominantly in one vibrational mode prior to dissociation. Their operating pressures exceeded 60 torr. While the question of *intramolecular* energy transfer prior to dissociation remains unanswered, our data strongly suggest that, at one torr, *intermolecular* energy transfer occurs sufficiently often to scramble the isotopic selectivity before dissociation. At 60 torr we would expect a large degree of collisional redistribution of the energy among the vibrational modes prior to dissociation. #### D. Optimization of the selectivity As the products of the multiphoton dissociation of CF₃I become enriched in ¹²C, the remaining reactants become $^{^{}b}$ Energy/cm² = I(0.12). $^{^{}c}f = (^{12}CF_{3}I + ^{13}CF_{3}I)/(^{12}CF_{3}I + ^{13}CF_{3}I)_{initial}$ $d_{r} = V_{irr}/V_{\bullet}$ $^{^{\}circ}\text{MeOH-LN}_2$ slush on side arm. f-80 °C dry ice jacket on cell. FIG. 2. Plot of remaining fraction of CF₃I as a function of number of laser pulses and cell temperature: $T=298\,^{\circ}\text{K}$ (circles) and $T=-80\,^{\circ}\text{C}$ (triangles). The dashed line is the prediction of Eq. (7) of the text. enriched in 13 C. For a given value of α the limit of enrichment in the reactants depends through Eq. (5) on their remaining fraction, f. In order to obtain an efficient separation we would like f to fall as rapidly as possible with the number of pulses, N. Figure 2 shows the dependence of f on N. The upper line (circles) is a fit to the experimental data for a cell temperature of 298°K, while the dashed line is the prediction of Eq. (7), where Δf has been chosen to fit the region of low N. The middle line (triangles) shows the effect of cooling the cell to -80 °C. It is evident that cooling increases the rate of decomposition with N_{\bullet} . This increase may be due to at least two effects: 1) Cooling may place more population in the absorbing levels and, therefore, increase the fractional dissociation. 2) Cooling may also affect the fractional dissociation through inhibition of the Reaction (14), which would otherwise cause a decrease in Δf with N as I_2 accumulated in the cell. The rate of Reaction (14) has been reported³⁰ to be 5×10^{-12} cm³ molecule⁻¹ sec⁻¹. At -80 °C the vapor pressure of I_2 is below 10^{-6} torr, ³¹ whereas the vapor pressures of CF3I and C2F6 are both larger than our operating pressures. Thus, at this temperature Reaction (14) should be effectively eliminated; L will condense at the cell walls between laser pulses (0.5 Hz). Since it is unlikely that radicals will reach the cell walls (radius = 2 cm) before recombining, other effects of cooling must be attributable to the temperature variation of the recombination rates. The source of residual deviation between the -80°C curve and the predicted curve of Fig. 2 is still under investigation. By cooling the cell to $-80\,^{\circ}$ C we have achieved a 590-fold enrichment of $^{13}\text{CF}_3\text{I}$. Naturally occurring CF₃I ($^{13}\text{C}/^{12}\text{C}\approx 1/99$) at 0.10 torr was irradiated with 2000 pulses on the R(14) line of the 9.6 μ CO₂ laser band. The peak intensity was 25 MW/cm² corresponding to an energy fluence of 3 J/cm². Mass spectral analysis showed that 86% of the residual reactant was $^{13}\text{CF}_3\text{I}$. These data are summarized in Table I, Runs 13–15. ## E. Efficiency of the multiphoton process By measuring both the amount of energy absorbed by the sample and the number of product molecules, it is possible to determine the quantum efficiency of the multiphoton dissociation. We have examined the efficiency as a function of incident intensity over the range $1-10 \, \text{MW/cm}^2$. A substantial uncertainty in the efficiency arises from the kinetics. If Reaction (12) and (14) occur faster than Reaction (11), then the net number of products created or reactants consumed will be substantially less than the number of dissociations. This will result in a lower apparent efficiency for dissociation than that which would be obtained in the absence of these reactions. Of the set of Reactions (11)-(14), Reaction (13) is known to be slow32 under our experimental conditions. The rate for Reaction (11) has been reported³³⁻³⁶ to be in the range $5 \times 10^{-12} - 3.8 \times 10^{-11}$ cm³ molecule⁻¹ sec⁻¹, while that for Reaction (12) has been reported³⁷⁻³⁹ to be in the range $(1.5-6.5)\times10^{-11}$ cm³ molecule⁻¹ sec⁻¹. Based on the value of 5×10⁻¹² for Reaction (11), Andreeva et al. 39 have found that Reaction (12) has a rate of (1.5-2.5) $\times 10^{-11}$ cm³ molecule⁻¹ sec⁻¹. It would thus appear that roughly 80% of the CF₃ radicals recombine with I to form CF₃I. The remainder form C₂F₆ unless the pressure of I_2 is high enough to allow Reaction (14) to occur (k_{14} = 5×10^{-12}). 30 Consequently, the fractional dissociation will actually be five times larger than the apparent value we measure. The fractional dissociation per shot and the efficiency reported below have not been corrected by this factor since there is still some uncertainty in the relative rates of Reactions (12) and (13). The first step in determining the efficiency of the multiphoton dissociation process is to determine the fraction of molecules dissociated in the beam per pulse, Δf . If we ignore the effect of Reaction (14), Δf may be determined from N and the measured value of f using Eq. (7). In Table I, Runs 16–24 give the results for 0.5 torr of CF₃I and a range of incident intensities. These are plotted in Fig. 3. The fractional dissociation exhibits a threshold below 2 MW/cm² (0.24 J/cm²) and then increases with intensity. At an intensity of 10 MW/cm² (1.2 J/cm²), roughly 8.4% of the molecules in the beam are dissociated per pulse, while at 16 MW/cm² (1.9 J/cm²) the fraction increases to 15%. The fractional dissociation in the beam per pulse may be converted to an efficiency if the amount of energy absorbed by the sample is measured. For 0.5 torr of CF_3I absorption could conveniently be measured in the intensity range below 11 MW/cm². The resulting curve was interpolated to yield the values listed in the column of Table I headed " E_{abs} ". Since the CF_3 -I bond strength FIG. 3. Fractional dissociation in the beam per pulse, Δf , as a function of laser intensity. The pressure of CF₃I was 0.5 torr. Intensity may be converted to energy fluence in J/cm² by multiplication by 0.12. is 55 kcal/mole and roughly equal to the energy of 18 laser photons, we define an efficiency of 1.0 to correspond to one dissociation for every 18 photons absorbed. Division of Δf by E_{abs} (in photons/molecule in the beam) and multiplication by 18 yields the efficiencies listed in Table I. At 10 MW/cm² (1.2 J/cm²) the efficiency is found to be 9.1%. Thus, one in every 11 photons absorbed contributes its energy to the dissociation process at this intensity. The actual efficiency may be much higher, considering the relative rates of Reactions (12) and (13). ## IV. CONCLUSION Multiphoton dissociation of CF_3I has been shown to be an isotopically selective and efficient process. Enrichment of carbon-13 by a factor of nearly 600 has been achieved. At 10 MW/cm² (1.2 J/cm²) the observation that at least 8.4% of the molecules in the beam are dissociated leads to the conclusion that at this intensity at least one in every 11 absorbed photons contributes its energy to the breaking of the CF_3 -I bond. These values may be as much as five times higher, considering the relative rates and Reactions (12) and (13). We are currently investigating the dependence of the selectivity and efficiency on wavelength and pressure of added gases. # **ACKNOWLEDGMENTS** We would like to thank Dr. Robert Swofford for technical assistance during the early part of this investigation. We gratefully acknowledge support for this project through a grant from the Standard Oil Company of Ohio. - ¹N. Bloembergen, Opt. Commun. 15, 416 (1975). - ²D. M. Larsen and N. Bloembergen, Opt. Commun. 17, 254 (1976). - ³R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. N. Makarov, and A. A. Puretzkii, Sov. Phys. JETP Lett. 23, 22 (1976). - ⁴S. Mukamel and J. Jortner, Chem. Phys. Lett. **40**, 150(1976). ⁵S. Mukamel and J. Jortner, J. Chem. Phys. **65**, 5204 (1976). - ⁶N. R. Isenor, V. Merchant, R. S. Hallsworth, and M. C. Richardson, Can. J. Phys. **51**, 1281 (1973). - ⁷D. F. Dever and E. Grunwald, J. Am. Chem. Soc. **98**, 5505 (1976). - ⁸M. J. Coggiola, P. A. Schulz, Y. T. Lee, and Y. R. Shen, Phys. Rev. Lett. 38, 17 (1977). - ⁹J. Black, E. Yablonovitch, N. Bloembergen, and S. Mukamel, Phys. Rev. Lett. 38, 1131 (1977). - ¹⁰N. R. Isenor and M. C. Richardson, Appl. Phys. Lett. 18, 225 (1971). - ¹¹H. Walther, "Atomic and Molecular Spectroscopy with Lasers," Topics in Applied Physics, Vol. 2, Laser Spectroscopy, edited by H. Walther, (Springer, Berlin, 1976). - ¹²Laser Spectroscopy, Proceedings of the Second International Conference, Megeve, June 23-27, 1975, edited by S. Haroche, J. C. Pebay-Peyroula, T. W. Hansch, S. E. Harris, (Springer, Berlin, 1975). - ¹³V. S. Letokhov and C. B. Moore, Sov. J. Quantum Electron. 6, 129, 259 (1976). - ¹⁴J. P. Aldridge III, J. H. Birely, C. D. Cantrell III, and D. C. Cartwright, "Experimental and Theoretical Studies of Laser Isotope Separation," Physics of Quantum Electronics, Vol. 4, Laser Photochemistry, Tunable Lasers, and Other Topics, edited by S. F. Jacobs, M. Sargent III, M. O. Scully, and C. T. Walker (Addison-Wesley, Reading, Mass., 1976) - ¹⁵A. Yogev and R. M. J. Benmair, J. Am. Chem. Soc. 97, 4430 (1975). - ¹⁶G. Koren, U. P. Oppenheim, D. Tal, M. Okon, and R. Weil, Appl. Phys. Lett. 28, 40 (1976). - ¹⁷R. V. Ambartzumian, V. S. Letokhov, E. A. Ryabov, and N. V. Chekalin, Sov. Phys. JETP Lett. 20, 273 (1974). - ¹⁸S. M. Freund and J. J. Ritter, Chem. Phys. Lett. **32**, 255 (1975). - ¹⁹R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. N. Makarov, E. A. Ryabov, and N. V. Chekalin, Sov. J. Quantum Electron. 5, 1196 (1975). - ²⁰J. L. Lyman and S. D. Rockwood, J. Appl. Phys. 47, 595 (1976). - ²¹R. A. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. M. Makarov, and A. A. Puretskii, Sov. Phys. JETP Lett. 22, 177 (1975). - ²²R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, and G. N. Makarov, Sov. Phys. JETP Lett. 21, 171 (1975). - ²³J. L. Lyman, R. J. Jensen, J. Rink, C. P. Robinson, and S. D. Rockwood, Appl. Phys. Lett. 27, 87 (1977). - ²⁴R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, and G. N. Makarov, Sov. Phys. JETP Lett. 22, 96 (1975). - ²⁵A preliminary report of this work has been presented at the Fifth Conference on Chemical and Molecular Lasers, Paper TAII7, April 18-20, St. Louis, Mo. - ²⁶H. Jones and F. Kohler, J. Mol. Spectrosc. 58, 125 (1975). ²⁷A. B. Petersen, J. Tiee, and C. Wittig, Opt. Commun. 17, 259 (1976). - ²⁸M. Benedict and T. H. Pigford, Nuclear Chemical Engineering (McGraw-Hill, New York, 1957) pp. 380, 381. - ²⁹(a) R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, and G. N. Makartov, Sov. Phys. JETP 42, 993 (1976); (b) 44, 231 (1976). - ³⁰J. G. Amphlett and E. Whittle, Trans. Faraday Soc. 62, 1662 (1966). - ³¹R. Honig and H. Hook, RCA Rev. 21, 360 (1960). - ³²J. A. Blake and G. Burns, J. Chem. Phys. **54**, 1480 (1971). - ³³P. Ayscough, J. Chem. Phys. 24, 944 (1956). - ³⁴T. Ogawa, G. A. Carlson, and G. C. Pimentel, J. Phys. Chem. **74**, 2090 (1970). - ³⁵N. Basco and F. G. M. Hathorn, Chem. Phys. Lett. 8, 291 (1971). - $^{36}\mathrm{R}$. Hiatt and S. W. Benson, Int. J. Chem. Kinet. 4, 479 (1972). Zalesskii, and I. L. Yachnev, Sov. Phys. JETP 38, 254 (1974). ³⁹T. I. Andreeva, S. V. Kuznetsova, A. I. Maslov, I. I. Sobel'man, and V. N. Sorokin, High Energy Chem. (USSR) 6, 368 (1972). ³⁷T. L. Andreeva, S. V. Kuznetsova, A. I. Maslov, I. I. Sobel'man, and V. N. Sorokin, Sov. Phys. JETP Lett. 13, 449 (1971). $^{^{38}\}text{I.}$ M. Belousova, N. G. Gorshov, O. B. Danilov, V. Yu.